Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-16T20:25:24.669Z Has data issue: false hasContentIssue false

U–Pb geochronology of Cretaceous magmatism on Svalbard and Franz Josef Land, Barents Sea Large Igneous Province

Published online by Cambridge University Press:  11 June 2013

FERNANDO CORFU*
Affiliation:
Department of Geosciences, University of Oslo, Postbox 1047 Blindern, N-0316 Oslo, Norway
STÉPHANE POLTEAU
Affiliation:
Volcanic Basin Petroleum Research AS, Forskningsparken, Gaustadalléen 21, N-0349 Oslo, Norway
SVERRE PLANKE
Affiliation:
Volcanic Basin Petroleum Research AS, Forskningsparken, Gaustadalléen 21, N-0349 Oslo, Norway
JAN INGE FALEIDE
Affiliation:
Department of Geosciences, University of Oslo, Postbox 1047 Blindern, N-0316 Oslo, Norway
HENRIK SVENSEN
Affiliation:
Physics of Geological Processes, University of Oslo, Postbox 1048 Blindern, N-0316 Oslo, Norway
ANDREW ZAYONCHECK
Affiliation:
Geological Institute of the Russian Academy of Science, St Petersburg Laboratory, 190121, 120 Moyka Quay, St Petersburg, Russia All-Russian Research Institute for Geology and Mineral Resources of the World Ocean 190121, 1 Angliysky Avenue, St Petersburg, Russia
NIKOLAY STOLBOV
Affiliation:
All-Russian Research Institute for Geology and Mineral Resources of the World Ocean 190121, 1 Angliysky Avenue, St Petersburg, Russia
*
Author for correspondence: fernando.corfu@geo.uio.no

Abstract

The opening of the Arctic oceanic basins in the Mesozoic and Cenozoic proceeded in steps, with episodes of magmatism and sedimentation marking specific stages in this development. In addition to the stratigraphic record provided by sediments and fossils, the intrusive and extrusive rocks yield important information on this evolution. This study has determined the ages of mafic sills and a felsic tuff in Svalbard and Franz Josef Land using the isotope dilution thermal ionization mass spectrometry (ID-TIMS) U–Pb method on zircon, baddeleyite, titanite and rutile. The results indicate crystallization of the Diabasodden sill at 124.5 ± 0.2 Ma and the Linnévatn sill at 124.7 ± 0.3 Ma, the latter also containing slightly younger secondary titanite with an age of 123.9 ± 0.3 Ma. A bentonite in the Helvetiafjellet Formation, also on Svalbard, has an age of 123.3 ± 0.2 Ma. Zircon in mafic sills intersected by drill cores in Franz Josef Land indicate an age of 122.7 Ma for a thick sill on Severnaya Island and a single grain age of ≥122.2 ± 1.1 Ma for a thinner sill on Nagurskaya Island. These data emphasize the importance and relatively short-lived nature of the Cretaceous magmatic event in the region.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alvey, A., Gaina, C., Kusznir, N. J. & Torsvik, T. H. 2008. Integrated crustal thickness mapping and plate reconstructions for the high Arctic. Earth and Planetary Science Letters 274, 310–21.CrossRefGoogle Scholar
Amundsen, H., Evdokimov, A., Dibner, V. & Andresen, A. 1998. Petrogenic significance and evolution of Mesozoic magmatism, Franz Josef Land, northeastern Barents Sea. In Geological Aspects of Franz Josef Land and the Northernmost Barents Sea. The Northern Barents Sea Geotraverse (eds Solheim, A., Musatov, E. & Heintz, N.) pp. 105–20. Norsk Polarinstitutt Meddelelser 151.Google Scholar
Buchan, K. L. & Ernst, R. E. 2006. Giant dyke swarms and the reconstruction of the Canadian Arctic islands, Greenland, Svalbard, and Franz Josef Land. In Dyke Swarms—Time Markers of Crustal Evolution (eds Hanski, E., Mertanen, S., Rämö, T. & Vuollo, J.), pp. 2748. Taylor & Francis, London, UK.CrossRefGoogle Scholar
Charles, A. J., Condon, D. J., Harding, I. C., Pälike, H., Marshall, J. E. A., Cui, Y., Kump, L. & Croudace, I. W. 2011. Constraints on the numerical age of the Paleocene-Eocene boundary. Geochemistry Geophysics Geosystems 12, Q0AA17, doi:10.1029/2010GC003426.CrossRefGoogle Scholar
Corfu, F. 2004. U-Pb age, setting, and tectonic significance of the anorthosite-mangerite-charnockite-granite-suite, Lofoten-Vesterålen, Norway. Journal of Petrology 45, 1799–819.CrossRefGoogle Scholar
Davis, W. J. & Davis, D. W. 2010. Alpha recoil loss from baddeleyite evaluated by depth profiling and numerical modelling: implications for U-Pb ages. Goldschmidt Conference Abstracts, Geochimica et Cosmochimica Acta 74 (11), A213.Google Scholar
Dibner, V. D. (ed.) 1998. Geology of Franz Jozef Land. Norsk Polarinstitutt, Meddelelser 146, 190 p.Google Scholar
Dypvik, H., Fjellså, B., Pcelina, T. M., Sokolov, A & Råheim, A. 1998. The diagenetic of the Triassic succession of Franz Josef Land. In Geological Aspects of Franz Josef Land and the Northernmost Barents Sea. The Northern Barents Sea Geotraverse (eds Solheim, A., Musatov, E. & Heintz, N.), pp. 83104. Norsk Polarinstitutt Meddelelser 151.Google Scholar
Ernst, R. & Bleeker, W. 2010. Large igneous provinces (LIPs), giant dyke swarms, and mantle plumes: significance for breakup events within Canada and adjacent regions from 2.5 Ga to the Present. Canadian Journal of Earth Sciences 47, 695739.Google Scholar
Faleide, J. I., Tsikalas, F., Breivik, A. J., Mjelde, R., Ritzmann, O., Engen, Ø., Wilson, J. & Eldholm, O. 2008. Structure and evolution of the continental margin off Norway and the Barents Sea. Episodes 31, 8291.Google Scholar
Grachev, A. F. 2000. Mantle plumes and the problems of Geodynamics. Isvestiya, Physics of the Solid Earth 36, 263–94.Google Scholar
Grachev, A. F., Arakelyantz, M. M., Lebedev, V. A., Musatov, E. E. & Stolbov, N. M. 2001. New K-Ar ages for basalts from Franz Josef Land. Russian Journal of Earth Sciences 3, 7982.Google Scholar
Grogan, P., Nyberg, K., Fotland, B., Myklebust, R., Dahlgren, S. & Riis, F. 2000. Cretaceous magmatism south and east of Svalbard: evidence from seismic reflection and magnetic data. Polarforschung 68, 2534.Google Scholar
Harland, W. B, Lester, M., Anderson, L. M. & Manasrah, D. (eds) 1997. The Geology of Svalbard. Geological Society, London, Memoirs 17.Google Scholar
Jaffey, A. H., Flynn, K. F., Glendenin, L. E., Bentley, W. C. & Essling, A. M. 1971. Precision measurement of half‑lives and specific activities of 235U and 238U. Physical Review, Section C, Nuclear Physics 4, 1889–906.Google Scholar
Krogh, T. E. 1973. A low contamination method for hydrothermal decomposition of zircon and extraction of U and Pb for isotopic age determinations. Geochimica et Cosmochimica Acta 37, 485–94.Google Scholar
Krogh, T. E. 1982. Improved accuracy of U‑Pb zircon ages by the creation of more concordant systems using an air abrasion technique. Geochimica et Cosmochimica Acta 46, 637–49.Google Scholar
Levskii, L. K., Stolbov, N. M., Bogomolov, E. S., Vasil'eva, I. M. & Makar'eva, E. M. 2006. Sr–Nd–Pb isotopic systems in basalts of the Franz Josef Land archipelago. Geochemistry International 44, 327–37.CrossRefGoogle Scholar
Ludwig, K. R. 2009. Isoplot 4.1. A geochronological toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication 4, 76.Google Scholar
Maher, H. D. 2001. Manifestations of Cretaceous High Arctic large igneous province in Svalbard. Journal of Geology 109, 91104.CrossRefGoogle Scholar
Mattinson, J. M. 2010. Analysis of the relative decay constants of 235U and 238U by multi-step CA-TIMS measurements of closed-system natural zircon samples. Chemical Geology 275, 186–98.Google Scholar
Minakov, A., Mjelde, R., Faleide, J. I., Flueh, E. R., Dannowski, A. & Keers, H. 2012. Mafic intrusions east of Svalbard imaged by active-source seismic tomography. Tectonophysics 518–521, 106–18.Google Scholar
Nejbert, K., Krajewski, K. P., Dubinska, E. & Pecskay, Z. 2011. Dolerites of Svalbard, north-west Barents Sea Shelf: age, tectonic setting and significance for geotectonic interpretation of the High-Arctic Large Igneous Province. Polar Research 30, 7306, doi: 10.3402/polar.v30i0.7306.Google Scholar
Piskarev, A. L., Heunemann, Ch., Makar'ev, A. A., Makar'eva, E. M., Bachtadse, V. & Aleksyutin, M. 2009. Magnetic parameters and variations in the composition of magmatic rocks from the Franz Josef Land archipelago. Physics of the Earth 2, 6683.Google Scholar
Schärer, U. 1984. The effect of initial 230Th disequilibrium on young U-Pb ages: the Makalu case, Himalaya. Earth and Planetary Science Letters 67, 191204.CrossRefGoogle Scholar
Solheim, A., Musatov, E. E., Heintz, N. & Elverhøi, A. 1998. Geological evolution and correlation between Franz Josef Land and Svalbard. The Northern Barents Sea Geotraverse: introduction to the project. In Geological Aspects of Franz Josef Land and the Northernmost Barents Sea. The Northern Barents Sea Geotraverse (eds Solheim, A., Musatov, E. & Heintz, N.), pp. 59. Norsk Polarinstitutt Meddelelser 151.Google Scholar
Stacey, J. S. & Kramers, J. D. 1975. Approximation of terrestrial lead isotope evolution using a two-stage model. Earth and Planetary Science Letters 26, 221–97.CrossRefGoogle Scholar
Svensen, H., Planke, S. & Corfu, F. 2010. Zircon dating ties Northeast Atlantic sill emplacement to initial Eocene global warming. Journal of the Geological Society, London 167, 433–6.Google Scholar
Svensen, H., Corfu, F., Polteau, S., Hammer, Ø. & Planke, S. 2012. Rapid Magma Emplacement in the Karoo Large Igneous Province. Earth and Planetary Science Letters 325–326, 19.CrossRefGoogle Scholar
Tarakhovsky, A. N., Fishman, M. V., Shkola, I. V. & Andreichev, V. L. 1983. The age of the traps of the Fanz Josef Land. In Prediction and Estimation of the Nickel Content of New Metalliferous Areas on the Northern Part of the Siberian Platform (ed. Kavardin, G. I.), Sevmorgeologia, Leningrad (in Russian), pp. 100–8.Google Scholar
Thorarinsson, S. B., Holm, P. M., Tappe, S., Heaman, L. M. & Tegner, C. 2011. Late Cretaceous–Palaeocene continental rifting in the High Arctic: U–Pb geochronology of the Kap Washington Group volcanic sequence, North Greenland. Journal of the Geological Society, London 168, 1093–106.Google Scholar
Trettin, H. P. & Parrish, R. 1987. Late Cretaceous bimodal magmatism, northern Ellesmere Island: isotopic age and origin. Canadian Journal of Earth Sciences 24, 257–65.CrossRefGoogle Scholar
Worsley, D. 2008. The post-Caledonian development of Svalbard and the western Barents Sea. Polar Research 27, 298317.Google Scholar
Supplementary material: File

Corfu Supplementary Material

Table S1 and Figure S1

Download Corfu Supplementary Material(File)
File 588.8 KB