Skip to main content Accessibility help
×
Home
Hostname: page-component-5cfd469876-gzklw Total loading time: 0.374 Render date: 2021-06-23T18:35:04.452Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true }

Provenance of volcaniclastic beach sand in a magmatic-arc setting: an example from Lipari island (Aeolian archipelago, Tyrrhenian Sea)

Published online by Cambridge University Press:  13 June 2016

CONSUELE MORRONE
Affiliation:
Dipartimento di Biologia, Ecologia e Scienze della Terra (DiBEST), Università della Calabria, via P. Bucci, cubo 15b, 87036, Rende (CS), Italy
ROSANNA DE ROSA
Affiliation:
Dipartimento di Biologia, Ecologia e Scienze della Terra (DiBEST), Università della Calabria, via P. Bucci, cubo 15b, 87036, Rende (CS), Italy
EMILIA LE PERA
Affiliation:
Dipartimento di Biologia, Ecologia e Scienze della Terra (DiBEST), Università della Calabria, via P. Bucci, cubo 15b, 87036, Rende (CS), Italy
KATHLEEN M. MARSAGLIA
Affiliation:
Department of Geological Sciences, California State University, Northridge, California 91330-8266, USA
Corresponding

Abstract

Lipari, an active volcanic island in the Aeolian magmatic arc, is an excellent area to determine the effects of multiple source lithology, climate, weathering, transport and depositional environment on epiclastic sand composition. Volcaniclastic sand samples from 12 modern beaches were petrographically characterized using the Gazzi–Dickinson method, and the proportions of source rocks in combination with topography in associated coastal drainage basins were quantified using GIS. Several types of bedrock in the 12 drainage basins that are the likely prominent sources for sand at each sampled beach were recognized, and divided into two categories of provenance lithotypes: lavas and pyroclastic rocks ranging in composition from basaltic andesitic, to andesitic, to rhyolitic. Volcanic lithic fragments from Lipari beach sand consist of colourless and black glassy volcanic fragments with lathwork, felsitic, vitric and microlitic textures. Moreover, high amounts of detrital less durable minerals, such as pyroxene, olivine and Fe oxides, illustrate how the analysed sands preserve the source rock(s) provenance signals. Applying the concept of Sand Generation Index we see that these lithotypes have different propensities to create detritus, in terms of both grain-size and composition. Clastic contribution from pyroclastic rock outcrops such as pumice is not found in the size ranges studied, suggesting that these pumiceous source rocks probably only produce gravel or very fine sand and silt. This finding has implications for the stratigraphic record because pumice clasts, ranging from medium to fine grain-size, could be underrepresented in older volcaniclastic deposits and overrepresented in other size fractions.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below.

References

Andò, S. & Garzanti, E. 2013. Raman spectroscopy in heavy-mineral studies. In Sediment Provenance Studies in Hydrocarbon Exploration and Production (eds Scott, R. A., Smyth, H. R., Morton, A. C. & Richardson, N.), pp. 395412. Geological Society of London, Special Publication no. 386.Google Scholar
Andò, S., Garzanti, E., Padoan, M. & Mara Limonta, M. 2012. Corrosion of heavy minerals during weathering and diagenesis: a catalog for optical analysis. Sedimentary Geology 280, 165–78.CrossRefGoogle Scholar
Arribas, J., Critelli, S., Le Pera, E. & Tortosa, A. 2000. Composition of modern stream sand derived from a mixture of sedimentary and metamorphic source rocks (Henares River Central Spain). Sedimentary Geology 133, 2748.CrossRefGoogle Scholar
Arribas, J. & Tortosa, A. 2003. Detrital modes in sedimenticlastic sands from low-order streams in the Iberian Range, Spain: the potential for sand generation by different sedimentary rocks. Sedimentary Geology 159, 275303.CrossRefGoogle Scholar
Barberi, F., Innocenti, F., Ferrara, G., Keller, J. & Villari, L. 1973. Evolution of Eolian arc volcanism (Southern Tyrrhenian Sea). Earth and Planetary Science Letters 21, 269–76.CrossRefGoogle Scholar
Basu, A. & Molinaroli, E. 1989. Provenance characteristics of detrital opaque Fe-Ti oxides minerals. Journal of Sedimentary Petrology 59, 922–34.Google Scholar
Basu, A. & Molinaroli, E. 1991. Reliability and application of detrital Fe-Ti oxide minerals in provenance determination. Geological Society, London, Special Publications, 57, 5565.CrossRefGoogle Scholar
Beccaluva, L., Gabbianelli, G., Lucchini, F., Rossi, P. L. & Savelli, C. 1985. Petrology and K/Ar ages of volcanics dredged from the Eolian seamounts: implications for geodynamic evolution of the southern Tyrrhenian basin. Earth and Planetary Science Letters 74, 187208.CrossRefGoogle Scholar
Calanchi, N., De Rosa, R., Mazzuoli, R., Rossi, P., Santacroce, R. & Ventura, G. 1993. Silicic magma entering a basaltic magma chamber: the case study of Salina (Aeolian Islands, Italy). Bulletin of Volcanology 55, 504–22.CrossRefGoogle Scholar
Caracciolo, L., Tolosana-Delgado, R., Le Pera, E., von Eynatten, H., Arribas, J. & Tarquini, S. 2012. Influence of granitoid textural parameters on sediment composition: implications for sediment generation. Sedimentary Geology 280, 93107.CrossRefGoogle Scholar
Carey, S. & Sparks, R. S. J. 1986. Quantitative models of the fallout and dispersal of tephra from volcanic euption columns. Bulletin of Volcanology 48, 109–25.CrossRefGoogle Scholar
Carson, M. A. & Kirkby, M. 1972. Hills Slope Form and Process. Cambridge University Press, 475 pp.Google Scholar
Cataldo, P. 1981. Caratteristiche meteomarine del paraggio. In Primi risultati delle indagini di geografia fisica, sedimentologia e idraulica marittima sul litorale del golfo di Sant'Eufemia, 65–85. Pubb. 127, Progetto finalizzato “Conservazione del suolo-Dinamica dei litorali”, C.N.R.Google Scholar
Cather, S. M. & Folk, R. L. 1991. Pre-diagenetic sedimentary fractionation of andesitic detritus in a semiarid climate: an example from the Eocene Datil Group, New Mexico. In Sedimentation in Volcanic Settings (eds Fisher, R. V. and Smith, G. A.), pp. 211–26. Society of Economic Paleontologists and Mineralogists Special Paper 45.CrossRefGoogle Scholar
Cawood, P. A. 1991. Nature and record of igneous activity in the Tonga Arc, SW Pacific, deduced from the phase chemistry of derived detrital grains. In Developments in Sedimentary Provenance Studies (eds Morton, A. C., Todd, S. P. & Haughton, P. D. W.), pp. 305–21. Geological Society Special Publication no. 57.Google Scholar
Chiarabba, C., De Gori, P. & Speranza, F. 2008. The southern Tyrrhenian subduction zone: deep geometry, magmatism and Plio-Pleistocene evolution. Earth Planetary Science Letters 268, 408–23.CrossRefGoogle Scholar
Cleary, W. J. & Connolly, J. R. 1971. Distribution and genesis of quartz in a piedmont-coastal plain environment. Geological Society of America Bulletin 82, 2755–66.CrossRefGoogle Scholar
C.N.R. 1985. Atlante delle spiagge italiane. Dinamismo – Tendenza evolutiva – Opere umane. In Progetto Finalizzato ‘Conservazione del Suolo’ sottoprogetto ‘Dinamica dei Litorali’. Foglio 244 I. Eolie. Scala 1:100,000. Firenze: S.EL.CA.Google Scholar
Crisci, G., Delibrias, G., De Rosa, R., Mazzuoli, R. & Sheridan, M. 1983. Age and petrology of the late Pleistocene brown tuffs on Lipari, Italy. Bulletin of Volcanology 46, 381–91.CrossRefGoogle Scholar
Crisci, G. M., De Rosa, R., Esperanqa, S., Mazzuoli, R. & Sonnino, M. 1991. Temporal evolution of a three-component system: the island of Lipari (Aeolian Arc, south Italy). Bulletin of Volcanology 53, 207–21.CrossRefGoogle Scholar
Crisci, G. M., De Rosa, R., Lanzafame, G., Mazzuoli, R., Sheridan, M. F. & Zuffa, G. G. 1981. Monte Guardia sequence: a late-Pleistocene eruptive cycle on Lipari (Italy). Bulletin of Volcanology 44 (3), 241–55.CrossRefGoogle Scholar
Critelli, S., Arribas, J., Le Pera, E., Tortosa, A., Marsaglia, K. M. & Latter, K. K. 2003. The recycled orogenic sand provenance from an uplifted thrust belt, Betic Cordillera, Southern Spain. Journal of Sedimentary Research 73, 7281.CrossRefGoogle Scholar
Critelli, S., De Rosa, R., Sonnino, M. & Zuffa, G. G. 1990. Significato dei depositi vulcanoclastici della Formazione delle Tufiti di Tusa (Miocene inferiore, Lucania meridionale). Bollettino Società Geologica Italiana 109, 743–62.Google Scholar
Critelli, S. & Ingersoll, R. V. 1995. Interpretation of neovolcanic versus palaeovolcanic sand grains: an example from Miocene deep-marine sandstone of the Topanga Group (southern California). Sedimentology 42, 783804.CrossRefGoogle Scholar
Critelli, S., Le Pera, E. & Ingersoll, R. V. 1997. The effects of source lithology, transport, deposition and sampling scale on the composition of southern California sand. Sedimentology, 44, 653–71.CrossRefGoogle Scholar
Critelli, S., Marsaglia, K. M. & Busby, C. J. 2002. Tectonic history of a Jurassic backarc-basin sequence (the Gran Cañon Formation, Cedros Island, Mexico), based on compositional modes of tuffaceous deposits. Geological Society of America Bulletin 114 (5), 515–27.2.0.CO;2>CrossRefGoogle Scholar
Critelli, S., Sorriso-Valvo, M. & Ventura, G. 1993. Relazioni tra attività vulcanica, sedimentazione epiclastica ed evoluzione geomorfologica nell'isola di Salina (Isole Eolie). Bollettino Società Geologica Italiana 112, 447–70.Google Scholar
Davì, M., De Rosa, R., Donato, P. & Sulpizio, R. 2010. The Lami pyroclastic succession (Lipari, Aeolian Islands): a clue for unravelling the eruptive dynamics of the Monte Pilato rhyolitic pumice cone. Journal of Volcanology and Geothermal Research 201 (2011), 285300.CrossRefGoogle Scholar
Davì, M., De Rosa, R., Donato, P., Vetere, F., Barca, D. & Cavallo, A. 2009. Magmatic evolution and plumbing system of ring-fault volcanism: the Vulcanello Peninsula (Aeolian Islands, Italy). European Journal of Mineralogy 21 (5), 1009–28. doi: 10.1127/0935-1221/2009/0021-1955.CrossRefGoogle Scholar
De Rosa, R. 1999. Compositional modes in the ash fraction of some modern pyroclastic deposits: their determination and significance. Bulletin of Volcanology 61, 162–73.CrossRefGoogle Scholar
De Rosa, R., Donato, P., Gioncada, A., Masetti, M. & Santacroce, R. 2003. The Monte Guardia eruption (Lipari, Aeolian Islands): an unusual magma mixing sequence. Bulletin of Volcanology 65, 530–43.CrossRefGoogle Scholar
De Rosa, R. & Sheridan, M. F. 1983. Evidence for magma mixing in the surge deposits of the Monte Guardia sequence, Lipari. Journal of Volcanology and Geothermal Research 17, 313–28.CrossRefGoogle Scholar
Dickinson, W. R. 1970. Interpreting detrital modes of greywacke and arkose. Journal of Sedimentary Petrology 40, 695707.Google Scholar
Dickinson, W. R. & Suczek, C. A. 1979. Plate tectonics and sandstone compositions. American Association of Petroleum Geologists Bulletin, 63, 2164–82.Google Scholar
Dickinson, W. R., & Valloni, R. 1980, Plate settings and provenance of sands in modern ocean basins. Geology 8, 82–6.2.0.CO;2>CrossRefGoogle Scholar
Dye, T. S. & Dickinson, W. R. 1996. Sources of sand tempers in prehistoric Tongan pottery. Geoarchaeology 11, 141–64.3.0.CO;2-4>CrossRefGoogle Scholar
Faccenna, C, Becker, T. W., Lucente, F. P., Jolivet, L. & Rossetti, F. 2001. History of subduction and back-arc extension in the Central Mediterranean. Geophysical Journal International 145 (3), 809–20.CrossRefGoogle Scholar
Favalli, M., Karátson, D., Mazzuoli, R., Pareschi, M. T. & Ventura, G. 2005. Volcanic geomorphology and tectonics of the Aeolian archipelago (southern Italy) based on integrated DEM data. Bulletin of Volcanology 68, 157–70.CrossRefGoogle Scholar
Flores, R. M. & Shideler, G. L. 1978. Factors controlling heavy mineral variations on the South Texas outer continental shelf, Gulf of Mexico. Journal of Sedimentary Petrology 48, 269–80.Google Scholar
Forni, F., Lucchi, F., Peccerillo, A., Tranne, C. A., Rossi, P. L. & Frezzotti, M. L. 2013. Stratigraphy and geological evolution of the Lipari volcanic complex (central Aeolian archipelago). In The Aeolian Islands Volcanoes (eds Lucchi, F., Peccerillo, A., Keller, J., Tranne, C. A. and Rossi, P. L.). Geological Society, London, Memoirs, 37. 213–79.Google Scholar
Frihy, O. E., Lotfy, M. F. & Komar, P. 1995. Spatial variations in heavy minerals and patterns of sediment sorting along the Nile delta, Egypt. Sedimentary Geology 97, 3341.CrossRefGoogle Scholar
Gamberi, F. 2001. Volcanic facies associations in a modern volcaniclastic apron (Lipari and Vulcano offshore, Aeolian Island Arc). Bulletin of Volcanology 63, 264–73.CrossRefGoogle Scholar
Garzanti, E. 1986. Source rock versus sedimentary control on the mineralogy of deltaic volcanic arenites (Upper Triassic, northern Italy). Journal of Sedimentary Petrology 56, 267–75.Google Scholar
Garzanti, E. & Andò, S. 2007 a. Heavy mineral concentration in modern sands: implication for provenance interpretation. Developments in Sedimentology 58, 517–45.CrossRefGoogle Scholar
Garzanti, E. & Andò, S. 2007 b. Plate tectonics and heavy minerals suites of modern sands. Developments in Sedimentology 58, 741–63.CrossRefGoogle Scholar
Garzanti, E., Andò, S. & Vezzoli, G. 2008. Settling equivalence of detrital minerals and grain-size dependence of sediment composition. Earth and Planetary Science Letters 273, 138–51.CrossRefGoogle Scholar
Garzanti, E., Andò, S. & Vezzoli, G. 2009. Grain-size dependence of sediment composition and environmental bias in provenance studies. Earth and Planetary Science Letters 277, 422–32.CrossRefGoogle Scholar
Garzanti, E., Canclini, S., Moretti Foggia, F. & Petrella, N. 2002. Unravelling magmatic and orogenic provenances in modern sands: the back-arc side of the Apennine thrust-belt (Italy). Journal of Sedimentary Research 72, 217.CrossRefGoogle Scholar
Gillot, P.-Y. 1987. Histoire volcanique des lies Eoliennes: arc insulaire ou complexe orogenique annulaire? Doc Tray IGAL 11, 3542.Google Scholar
Girty, G. H., Marsh, J., Meltzner, A., McConnell, J. R., Nygren, D., Nygren, J., Prince, G. M., Randall, K., Johnson, D., Heitman, B. & Nielsen, J. 2003, Assessing changes in elemental mass as a result of chemical weathering of granodiorite in a Mediterranean (hot summer) climate. Journal of Sedimentary Research 73 (3), 434–43.CrossRefGoogle Scholar
Gvirtzman, Z. & Nur, A. 2001. Residual topography, lithospheric structure and sunken slabs in the central Mediterranean. Earth and Planetary Science Letters 187, 117–30.CrossRefGoogle Scholar
Heins, W. A. 1995. The use of mineral interfaces in sand-sized rock fragments to infer ancient climate. Geological Society of America Bulletin 107, 113–25.2.3.CO;2>CrossRefGoogle Scholar
Heins, W. A. & Kairo, S. 2007. Predicting sand character with integrated genetic analysis. In, Sedimentary Provenance and Petrogenesis: Perspectives from Petrography and Geochemistry (eds Arribas, J., Critelli, S. & Johnsson, M. J.), pp. 345–79. Geological Society of America Special Paper 420.Google Scholar
Ingersoll, R. V. 1990. Actualistic sandstone petrofacies: discriminating modern and ancient source rocks. Geology 18, 733–6.2.3.CO;2>CrossRefGoogle Scholar
Ingersoll, R. V., Bullard, T. F., Ford, R. L., Grimm, J. P., Pickle, J. D. & Sares, S. W. 1984. The effect of grain size on detrital modes: a test of the Gazzi-Dickinson point-counting method. Journal of Sedimentary Petrology 54, 103–16.Google Scholar
Ingersoll, R. V., Kretchmer, A. G. & Valles, P. K. 1993. The effect of sampling scale on actualistic sandstone petrofacies. Sedimentology 40, 937–53.CrossRefGoogle Scholar
Inman, D. L. & Nordstrom, C. E. 1971. On the tectonic and morphologic classification of coasts. Journal of Geology 79, 121.CrossRefGoogle Scholar
ISPRA, Istituto Superiore per la Protezione e la Ricerca Ambientale. 2011. Gli indicatori del clima in Italia nel 2010. Anno VI, 152 pp.Google Scholar
Jackson, T. A. & Keller, W. D. 1970. A comparative study of the role of lichens and “inorganic” processes in the chemical weathering of Recent Hawaiian lava flows. American Journal of Science 269 (5), 446–66.CrossRefGoogle Scholar
James, W. C., Mack, G. H. & Suttner, L. J. 1981. Relative alteration of microcline and sodic plagioclase in semi-arid and humid climates. Journal of Sedimentary Petrology 51, 151–64.Google Scholar
Johnsson, M. J., Stallard, R. F. & Meade, R. H., 1988, First-cycle quartz arenites in the Orinoco River basin, Venezuela and Colombia. Journal of Geology 96, 263–77.CrossRefGoogle Scholar
Johnsson, M. J., Ellen, S. D. & McKittrick, M. A. 1993. Intensity and duration of chemical weathering: an example from soil clays of the southern Koolau Mountains, Oahu, Hawaii. In Processes Controlling the Composition of Clastic Sediments (eds Johnsson, M. J. & Basu, A.), 119. Geological Society of America, Special Paper 284.Google Scholar
Keller, J. 1982. Mediterranean island arcs. In Andesites (ed. Thorpe, R. S.), pp. 307–25 Chichester: Wiley & Sons.Google Scholar
King, G. M. 2003. Contributions of Atmospheric CO and hydrogen uptake to microbial dynamics on recent Hawaiian volcanic deposits. Applied and Environmental Microbiology 69 (7), 4067–75.CrossRefGoogle ScholarPubMed
Komar, P. D. & Wang, C. 1984. Processes of selective grain transport and the formation of placers in beaches. Journal of Geology 92, 637–55.CrossRefGoogle Scholar
Le Pera, E., Arribas, J., Critelli, S. & Tortosa, A. 2001. The effects of source rocks and chemical weathering on the petrogenesis of siliciclastic sand from the Neto River (Calabria, Italy): implications for provenance studies. Sedimentology 48, 357–78.CrossRefGoogle Scholar
Le Pera, E., Mongelli, G., Morelli, F. & Critelli, S. 2000. Compositional and geochemical signature of provenance in modern sediments from the Tyrrhenian continental shelf, Calabria, Italy. Giornale di Geologia 62, 3755.Google Scholar
Lucchi, F., Tranne, C. A., Calanchi, N., Pirazzoli, P., Romagnoli, C., Radtke, U., Reyss, J. L. & Rossi, P. L. 2004. Stratigraphic constraints to date late-Quaternary ancient shorelines and to evaluate vertical movements at Lipari (Aeolian Islands). Quaternary International 115/116, 105–15.CrossRefGoogle Scholar
Lucchi, F., Tranne, C. A., De Astis, G., Keller, J., Losito, R. & Morche, W. 2008. Stratigraphy and significance of Brown Tuffs on the Aeolian Islands (southern Italy). Journal of Volcanology and Geothermal Research 177 (1), 4970. doi: 10.1016/j.jvolgeores.2007.11.006.CrossRefGoogle Scholar
Lucchi, F., Tranne, C. A., & Rossi, P. L. 2010. Stratigraphic approach to geological mapping of the late Quaternary volcanic island of Lipari (Aeolian archipelago, southern Italy). In Stratigraphy and Geology of Volcanic Areas (eds Groppelli, G. & Viereck-Goette, L.), pp. 132. Geological Society of America Special Paper 464.Google Scholar
Mack, G. H. & Jerzykiewicz, T. 1989. Detrital modes of sand and sandstone derived from andesitic rocks as paleoclimatic indicator. Sedimentary Geology 65, 3544.CrossRefGoogle Scholar
Manville, V., Segschneider, B. & White, J. D. 2002. Hydrodynamic behaviour of Taupo 1800a pumice: implications for the sedimentology of remobilized pyroclasts. Sedimentology 49, 955–76.CrossRefGoogle Scholar
Marsaglia, K. M. 1992. Petrography and provenance of volcaniclastic sands recovered from the Izu-Bonin Arc, Leg 126. Proceedings of the Ocean Drilling Program, Scientific Results, 126, 139–54.Google Scholar
Marsaglia, K. M. 1993. Basaltic island sand provenance. In Processes Controlling the Composition of Clastic Sediments (eds Johnsson, M. J. & Basu, A.), pp. 4165. Geological Society of America Bulletin, Special Paper 284.CrossRefGoogle Scholar
Marsaglia, K. M. & Ingersoll, R. V. 1992. A reassessment of magmatic-arc provenance: compositional trends in arc-related, deep-marine sand and sandstone. Geological Society of America Bulletin 104, 1637–49.2.3.CO;2>CrossRefGoogle Scholar
Marsaglia, K. M. & Tazaki, K. 1992. Diagenetic trend in ODP Leg 126 sandstones. In Proceedings of the Ocean Drilling Program, Scientific Results, vol. 126 (eds Taylor, B., Fujioka, K. et al.), pp. 125–38. College Station, TX: Ocean Drilling Program.Google Scholar
Mazzuoli, R., Tortorici, L. & Ventura, G. 1995. Oblique rifting in Salina, Lipari and Vulcano islands (Aeolian islands, southern Italy). Terra Nova 7, 444–52.CrossRefGoogle Scholar
McCoy, F. W. & Cornell, W. 1990. Volcaniclastic sediments in the Tyrrhenian Basin. In Proceedings of the Ocean Drilling Program, Scientific Results, vol. 107 (eds Kastens, K. A., Mascle, J. et al.), pp. 291305. College Station, TX: Ocean Drilling Program.Google Scholar
Molinaroli, E., Guerzoni, S. & Rampazzo, G. 1993. Contribution of Saharan dust to the central Mediterranean basin. In Processes Controlling the Composition of Clastic Sediments (eds Johnsson, M. J. and Basu, A.), pp. 303–12. Geological Society of America, Special Paper 284.CrossRefGoogle Scholar
Morton, A. C. 1985. Heavy minerals in provenance study. In Provenance of Arenites (ed. Zuffa, G. G.). Dordrecht: Reidel Publishing Company, pp. 249–77. NATO-ASI, series 148.CrossRefGoogle Scholar
Nesbitt, H. W. & Young, G. M. 1996. Petrogenesis of sediments in the absence of chemical weathering: effects of abrasion and sorting on bulk composition and mineralogy. Sedimentology 43, 341–58.CrossRefGoogle Scholar
Palomares, M. & Arribas, J. 1993. Modern stream sands from compound crystalline sources: composition and sand generation index. In Processes Controlling the Composition of Clastic Sediments (eds Johnsson, M. J. & Basu, A.), 313–22. Geological. Society of America, Special Paper 284.CrossRefGoogle Scholar
Patacca, E. & Scandone, P. 1989. Post-Tortonian mountain building in the Apennines: the role of the passive sinking of a relic lithospheric slab. In The Lithosphere in Italy: Advances in Earth Science Research (eds Boriani, A. M., Bonafede, M., Piccardo, G. B. & Vai, G. B.), pp. 157–76. Rome: Accademia Nazionale dei Lincei.Google Scholar
Picard, M. D. & McBride, E. F. 1993. Beach sands of Elba Island, Tuscany, Italy: roundness study and evidence of provenance. In Processes Controlling the Composition of Clastic Sediments (eds Johnsson, M. J. & Basu, A.), pp. 235–45. Geological Society of America, Special Paper 284.CrossRefGoogle Scholar
Pittman, E. D. 1969. Destruction of plagioclase twins by stream transport. Journal of Sedimentary Petrology 39, 1432–7.Google Scholar
Pittman, E. D. 1970. Plagioclase feldspar as an indicator of provenance in sedimentary rock. Journal of Sedimentary Petrology 40, 591–8.Google Scholar
Ramalho, S. R., Quartau, R., Trenhaile, S. A., Mitchell, C. N., Woodroffe, D. C. & Ávila, P. S. 2013. Coastal evolution on volcanic oceanic islands: a complex interplay between volcanism, erosion, sedimentation, sea-level change and biogenic production. Earth-Science Reviews 127, 140–70.CrossRefGoogle Scholar
Scarciglia, F., Saporito, N., La Russa, M. F., Le Pera, E., Macchione, M., Puntillo, D., Crisci, G. M. & Pezzino, A. 2012. Role of lichens in weathering of granodiorite in the Sila uplands (Calabria, southern Italy). Sedimentary Geology 280, 119–34.CrossRefGoogle Scholar
Schmincke, H.-U. 1981. Ash from vitric muds in deep sea cores from the Mariana Trough and fore-arc region (South Philippine Sea) (Sites 453, 454, 455, 458, 459 and SP), Deep Sea Drilling Project, Leg 60. In Initial Reports of the Deep Sea Drilling Project, 60 (eds Hussong, D. M. & Uyeda, S.), pp. 473–81. Washington DC: US Government Printing Office.Google Scholar
Smith, G. A. & Lotosky, J. E. 1995. What factors control the composition of andesitic sand? Journal of Sedimentary Research A65 (1), 91–8.Google Scholar
Sparks, R. S. J. 1976. Grain size variations in ignimbrites and implications for the transport of pyroclastic flows. Sedimentology 23, 147188.CrossRefGoogle Scholar
Tanguy, J. C., Le Goff, M., Principe, C., Arrighi, S., Chillemi, V., Paliotti, A., La Delfa, S. & Patanè, G. 2003. Archeomagnetic dating of Mediterranean volcanics of the last 2100 years: validity and limits. Earth and Planetary Science Letters 211, 111–24.CrossRefGoogle Scholar
Tranne, C. A., Lucchi, F., Calanchi, N., Lanzafame, G. & Rossi, P. L. 2002. Geological map of the island of Lipari (Aeolian Islands). Litografia Artistica Cartografica, Firenze, scale 1:12.500. Rome: Istituto Nazionale di Geofisica e Vulcanologia.Google Scholar
Ventura, G. 2013. Kinematics of the Aeolian volcanism (Southern Tyrrhenian Sea) from geophysical and geological data. In The Aeolian Islands Volcanoes (eds Lucchi, F., Peccerillo, A., Keller, J., Tranne, C. A. & Rossi, P. L.), pp. 311. Geological Society, London, Memoir 37.Google Scholar
Ventura, G., Giuseppe, V., Milano, G. & Pino, N. A. 1999. Relationships among crustal structure, volcanism and strike–slip tectonics in the Lipari–Vulcano Volcanic Complex (Aeolian Islands, Southern Tyrrhenian Sea, Italy). Physics of the Earth and Planetary Interior 116, 3152.CrossRefGoogle Scholar
White, J. D. L. & Houghton, B. F. 2006. Primary volcaniclastic rocks. Geological Society of America Bulletin, 34 (8), 677–80.Google Scholar
Zuffa, G. G. 1985. Optical analyses of arenites: influence of methodology on compositional results. In (ed. Zuffa, G. G.), Provenance of Arenites: Dordrecht, Netherlands, D. Reidel, NATO Advanced Study Institute Series, v. 148, pp. 165–89.CrossRefGoogle Scholar
Zuffa, G. G. 1987. Unravelling hinterland and offshore paleogeography from deep-water arenites. In, pp. 3961. Deep-Marine Clastic Sedimentology: Concepts and Case Studies (eds Leggett, J. K. & Zuffa, G. G.). London: Graham and Trotman.CrossRefGoogle Scholar
19
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Provenance of volcaniclastic beach sand in a magmatic-arc setting: an example from Lipari island (Aeolian archipelago, Tyrrhenian Sea)
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Provenance of volcaniclastic beach sand in a magmatic-arc setting: an example from Lipari island (Aeolian archipelago, Tyrrhenian Sea)
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Provenance of volcaniclastic beach sand in a magmatic-arc setting: an example from Lipari island (Aeolian archipelago, Tyrrhenian Sea)
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *