Hostname: page-component-848d4c4894-jbqgn Total loading time: 0 Render date: 2024-06-16T16:38:15.188Z Has data issue: false hasContentIssue false

Thymineless elimination of N group plasmids is Res(RII)-dependent and determined by a different gene than the Uvp plasmid phenotype

Published online by Cambridge University Press:  14 April 2009

M. J. Tribe
Affiliation:
Microbiology Section, Department of Pharmaceutics, The School of Pharmacy, University of London, Brunswick Square, London WC1N 1AX
R. J. Pinney
Affiliation:
Microbiology Section, Department of Pharmaceutics, The School of Pharmacy, University of London, Brunswick Square, London WC1N 1AX

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The wild-type N group plasmid RN3, which is phenotypically Res+ Mod+(RII) is not eliminated by thymine starvation of its bacterial host. Derivatives of RN3 selected for the Res phenotype are eliminated. The presence or absence of the RII modification specificity does not affect thymineless elimination of RN3 Res plasmids. A ResMod(am) RN3 mutant is not eliminated by thymine starvation from either amber suppressing or non-suppressing hosts, suggesting that it carries a cryptic mutation in a novel genetic locus required for elimination. Thymineless elimination is shown to be recA+-dependent and the presence of the X group plasmid R6K significantly inhibits elimination of RN3 ResMod+. However, since R6K has no effect on two other plasmid-mediated functions of UV protection and UV-induced mutagenesis, which are also recA+-dependent, it would appear that elimination is determined by a separate plasmid gene than that encoding the UV functions. This is confirmed using derivatives of another N group plasmid R390, which eliminate but which have lost the ability to increase UV-induced mutagenesis in their host.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1980

References

REFERENCES

Babudri, N. & Monti-Bragadin, C. (1977). Restoration of mutability in non-mutable Escherichia coli carrying different plasmids. Molecular and General Genetics 155, 287290.CrossRefGoogle ScholarPubMed
Bachmann, B. J. (1972). Pedigrees of some mutant strains of Escherichia coli K-12. Bacteriological Reviews 36, 525557.Google Scholar
Bannister, D. & Glover, S. W. (1970). The isolation and properties of non-restricting mutants of two different host specificities associated with drug resistance factors. Journal of General Microbiology 61, 6371.CrossRefGoogle ScholarPubMed
Birks, J. H. & Pinney, R. J. (1975). Correlation between thymineless elimination and the absence of hspII (Eco RII) specificity in N-group R factors. Journal of Bacteriology 121, 12081210.CrossRefGoogle Scholar
Boyer, H. W., Chow, L. T., Dugaiczyk, A., Hedgpeth, J. & Goodman, H. M. (1973). DNA substrate site for the Eco RII restriction endonuclease and modification methylase. Nature New Biology 244, 4043.Google Scholar
Breitman, T. R., Maury, P. B. & Toal, J. N. (1972). Loss of deoxyribonucleic acid-thymine during thymine starvation of Escherichia coli. Journal of Bacteriology 112, 646648.Google Scholar
Coetzee, J. N., Datta, N. & Hedges, R. W. (1972). R factors from Proteus rettgeri. Journal of General Microbiology 72, 543552.Google Scholar
Datta, N. & Hedges, R. W. (1971). Compatibility groups among fi R factors. Nature 234, 222223.Google Scholar
Datta, N. & Kontamichalou, P. (1965). Penicillinase synthesis controlled by infectious R factors in Enterobacteriaceae. Nature 208, 239241.Google Scholar
Davis, B. D. & Mingioli, E. S. (1950). Mutants of Escherichia coli requiring methionine or vitamin B12. Journal of Bacteriology 60, 1728.CrossRefGoogle ScholarPubMed
Drabble, W. T. & Stocker, B. A. D. (1968). R (transmissible drug resistance) factors in Salmonella typhimurium: pattern of transduction by phage P22 and ultraviolet-protection effect. Journal of General Microbiology 53, 109123.Google Scholar
Freifelder, D. (1969). Single-strand breaks in bacterial DNA associated with thymine starvation. Journal of Molecular Biology 45, 17.Google Scholar
Garrett, C., Duncan, B. K., Santi, D. V. & Warner, H. R. (1978). Metabolism of uracil-containing DNA during thymine starvation. Journal of Supramolecular Structure 8 (S2), 119.Google Scholar
Gates, F. T. & Linn, S. (1977). Endonuclease V of Escherichia coli. Journal of Biological Chemistry 252, 16471653.Google Scholar
Goulian, M. & Beck, W. (1966). Variations of intracellular deoxyribosyl compounds in deficiencies of vitamin B12, folio acid and thymine. Biochimica et Biophysica Acta 129, 336349.Google Scholar
Hattman, S., Schlagman, S. & Cousens, L. (1973). Isolation of a mutant of Escherichia coli defective in cytosine specific deoxyribonucleic acid methylase activity and in partial protection of bacteriophage λ against restriction by cells containing the N3 drug-resistance factor. Journal of Bacteriology 115, 11031107.Google Scholar
Hill, W. E. & Fangman, W. L. (1973). Single-strand breaks in deoxyribonucleic acid and viability loss during deoxyribonucleic acid synthesis inhibition in Escherichia coli. Journal of Bacteriology 116, 13291335.Google Scholar
Howard-Flanders, P., Boyce, R. P. & Theriot, L. (1966). Three loci in Escherichia coli K-12 that control the excision of pyrimidine dimers and certain other mutagen products from DNA. Genetics 53, 11191136.Google Scholar
Jacob, F. & Wollman, E. L. (1954). Induction spontanée du développement du bactério-phage au cours de la recombinaison génétique, chez Escherichia coli K12. Comptes Rendus Académie des Sciences, Paris 239, 317319.Google Scholar
Lackey, D., Walker, G. C., Keng, T. & Linn, S. (1977). Characterization of an endonuclease associated with the drug resistance plasmid pKM101. Journal of Bacteriology 131, 583588.CrossRefGoogle ScholarPubMed
Lindahl, T. (1974). An N-glycosidase from Escherichia coli that releases free uracil from DNA containing deaminated cytosine residues. Proceedings of the National Academy of Sciences U.S.A. 71, 36493653.CrossRefGoogle ScholarPubMed
JrMarsh, E. B. & Smith, D. H. (1969). R factors improving survival of Escherichia coli K12 after irradiation. Journal of Bacteriology 100, 128139.CrossRefGoogle Scholar
May, M. S. & Hattman, S. (1975). Analysis of bacteriophage deoxyribonucleic acid sequences methylated by host- and R-factor-controlled enzymes. Journal of Bacteriology 123, 768770.Google Scholar
McCann, J., Spingarn, N. E., Kobori, J. & Ames, B. N. (1975). Detection of carcinogens as mutagens: bacterial tester strains with R factor plasmids. Proceedings of the National Academy of Sciences U.S.A. 72, 979983.CrossRefGoogle ScholarPubMed
Mohn, G., Ellenberger, J. & McGregor, D. (1974). Development of mutagenicity tests using Escherichia coli K-12 as indicator organism. Mutation Research 25, 187196.CrossRefGoogle Scholar
Molina, A. M., Babudri, N., Tamaro, M., Venturini, S. & Monti-Bragadin, C. (1979). Enterobacteriaceae plasmids enhancing chemical mutagenesis and their distribution among incompatibility groups. FEMS Microbiology Letters 5, 3337.Google Scholar
Monti-Bragadin, C., Babudri, N. & Samer, L. (1976). Expression of the plasmid pKM101-determined DNA repair system in recA and lexA strains of Escherichia coli. Molecular and General Genetics 145, 303306.Google Scholar
Mortelmans, K. E. & Stocker, B. A. D. (1976). Ultraviolet light protection, enhancement of ultraviolet light mutagenesis and mutator effect of plasmid R46 in Salmonella typhi-murium. Journal of Bacteriology 128, 271282.Google Scholar
Mortelmans, K. E. & Stocker, B. A. D. (1979). Segregation of the mutator property of plasmid R46 from its ultraviolet-protecting property. Molecular and General Genetics 167, 317327.Google Scholar
Nakayama, H. & Hanawalt, P. (1975). Sedimentation analysis of deoxyribonucleic acid from thymine-starved Escherichia coli. Journal of Bacteriology 121, 537547.CrossRefGoogle ScholarPubMed
Novick, R. P., Clowes, R. C., Cohen, S. N., IIICurtiss, R., Datta, N. & Falkow, S. (1976). Uniform nomenclature for bacterial plasmids: a proposal. Bacteriological Reviews 40, 168189.CrossRefGoogle ScholarPubMed
Pauling, C. & Hanawalt, P. (1965). Nonconservative DNA replication in bacteria after thymine starvation. Proceedings of the National Academy of Sciences U.S.A. 60, 14951502.Google Scholar
Pinney, R. J., Bremer, K. & Smith, J. T. (1974). R-factor elimination by thymidylate synthetase inhibitors and the occurrence of single strand breaks in plasmid DNA. Molecular and General Genetics 133, 163174.Google Scholar
Pinney, R. J. & Smith, J. T. (1971). R-factor elimination by thymine starvation. Genetical Research 18, 173177.Google Scholar
Pinney, R. J. & Smith, J. T. (1972). R factor elimination during thymine starvation: effects of inhibition of protein synthesis and readdition of thymine. Journal of Bacteriology 111, 361367.Google Scholar
Pinney, R. J. & Smith, J. T. (1974). Fertility inhibition of an N-group R-factor by a group X R-factor, R6K. Journal of General Microbiology 82, 415418.CrossRefGoogle ScholarPubMed
Schlagman, S. & Hattman, S. (1974). Mutants of the N3 R-factor conditionally defective in hspII modification and deoxyribonucleic acid-cytosine methylase activity. Journal of Bacteriology 120, 234239.Google Scholar
Smith, J. T. (1967). Production of thymineless mutants in Gram-negative bacteria (Aero-bacter, Proteus). Journal of General Microbiology 47, 131137.CrossRefGoogle Scholar
Stacey, K. A. & Simson, E. (1965). Improved method for the isolation of thymine-requiring mutants of Escherichia coli. Journal of Bacteriology 90, 554555.Google Scholar
Sussman, R. & Jacob, F. (1962). Sur un système de repression thermosensible chez le bactério-phage d'Escherichia coli. Compies Rendus Académie des Sciences, Paris 254, 15171519.Google Scholar
Tweats, D. J., Pinney, R. J. & Smith, J. T. (1974). R-factor mediated nuclease activity involved in thymineless elimination. Journal of Bacteriology 118, 790795.Google Scholar
Tweats, D. J., Thompson, M. J., Pinney, R. J. & Smith, J. T. (1976). R factor-mediated resistance to ultraviolet light in strains of Escherichia coli deficient in known repair functions. Journal of General Microbiology 93, 103110.Google Scholar
Walker, G. C. (1977). Plasmid (pKM101)-mediated enhancement of repair and mutagenesis: dependence on chromosomal genes in Escherichia coli K-12. Molecular and General Genetics 152, 93103.Google Scholar
Walker, G. C. (1978). Inducible reactivation and mutagenesis of UV-irradiated bacterio-phage P22 in Salmonella typhimurium LT2 containing the plasmid pKM101. Journal of Bacteriology 135, 415421.Google Scholar
Walker, G. C. & Dobson, P. P. (1979). Mutagenesis and repair deficiencies of Escherichia coli umuC mutants are suppressed by the plasmid pKM101. Molecular and General Genetics 172, 1724.Google Scholar
Witkin, E. M. (1976). Ultraviolet mutagenesis and inducible DNA repair in Escherichia coli. Bacteriological Reviews 40, 869907.Google Scholar