Hostname: page-component-7479d7b7d-m9pkr Total loading time: 0 Render date: 2024-07-13T16:31:27.389Z Has data issue: false hasContentIssue false

Restricted trandsuction by bacteriophage P22 in Salmonella typhimurium

Published online by Cambridge University Press:  14 April 2009

P. F. Smith-Keary
Affiliation:
Department of Genetics, Trinity College, Dublin

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. In the transduction pro-401 (×) + some of the transductants are surrounded by several hundred small wild-type satellite colonies; these transductants spontaneously release phage which transduces pro-401 to wild-type at high frequency (HFT phage).

2. When the HFT phage is used to infect pro-401 at very low multiplicities of infection, most of the transductants are defective lysogens and segregate proline-requiring phage-sensitive derivatives; these transductants are apparently heterogenotes. At higher multiplicities of infection, or with lysogenic recipients, a higher proportion of satellited transductants is found.

3. The HFT phage preparations transduce only the proline region of the donor genome.

4. The existence is inferred of a defective P22 particle specifically incorporating the proline region of the Salmonella chromosome; these defective particles can establish themselves as prophage and confer immunity upon the infected cell, but are unable to replicate unless a normal prophage is also present. Satellited transductants are lysogenic both for a normal and defective (proline region carrying) phage, and so on lysis release transducing phage.

5. This system is compared with the λdg-gal and P1-dl-lac systems in E. coli.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1966

References

REFERENCES

Adams, J. N. & Luria, S. E. (1958). Transduction by bacteriophage P1. Abnormal phage function of the transducing particles. Proc. natn. Acad. Sci. U.S.A. 44, 590594.CrossRefGoogle ScholarPubMed
Arber, W., Kellenberger, G. & Weigle, J. (1957). La défectuosité du phage lambda transducteur. Schweiz. Z. allg. Path. Bakt. 20, 659665.Google Scholar
Campbell, A. (1957). Transduction and segregation in Escherichia coli K-12. Virology, 4, 366384.CrossRefGoogle Scholar
Campbell, A. (1958). The different kinds of transducing particles in the λ-gal system. Cold Spring Harb. Symp. quant. Biol. 23, 8384.Google Scholar
Campbell, A. (1960). On the mechanism of the recombinational event in the formation of transducing phage. Virology, 11, 339348.Google Scholar
Dubnau, E. & Stocker, B. A. D. (1964). Genetics of plasmids in Salmonella typhimurium. Nature, Lond. 204, 11121113.Google Scholar
Franklin, N. C. & Luria, S. E. (1961). Transduction by bacteriophage P1 and the properties of the lac genetic region in E. coli and S. dysenteriae. Virology, 15, 299311.Google Scholar
Lederberg, J., Lederberg, E. M., Zinder, N. D. & Lively, E. R. (1951). Recombination analysis of bacterial heredity. Gold Spring Harb. Symp. quant. Biol. 16, 413441.Google Scholar
Lennox, E. S. (1955). Transduction of linked genetic characters of the host by bacteriophage P1. Virology, 1, 190206.CrossRefGoogle ScholarPubMed
Luria, S. E., Adams, J. N. & Ting, R. C. (1960). Transduction of lactose-utilising ability among strains of E. coli and S. dysenteriae and the properties of the transducing phage particles. Virology, 12, 348390.Google Scholar
Morse, M. L., Lederberg, E. M. & Lederberg, J. (1956 a). Transduction in Escherichia coli K-12. Genetics, 41, 142156.CrossRefGoogle ScholarPubMed
Morse, M. L., Lederberg, E. M. & Lederberg, J. (1956 b). Transduction heterogenotes in Escherichia coli. Genetics, 41, 758779.Google Scholar
Smith, H. O. & Levine, M. (1965). Gene order in prophage P22. Virology, 27, 229231.CrossRefGoogle ScholarPubMed
Smith-Keary, P. F. (1960). A suppressor of leucineless in Salmonella typhimurium. Heredity, Lond., 14, 6171.Google Scholar
Smith-Keary, P. F. & Dawson, G. W. P. (1964). Episomic suppression of phenotype in Salmonella. Genet. Res. 5, 269281.CrossRefGoogle Scholar
Starlinger, P. (1958). Über einen defekt des transduzierenden Salmonella-phagen P22 übert ragenen materials. Z. Naturf. 14b, 523528.Google Scholar
Subbaiah, T. V. & Stocker, B. A. D. (1964). Rough mutants of Salmonella typhimurium. (1) Genetics. Nature, Lond. 201, 12981299.CrossRefGoogle Scholar
Weigle, J., Meselson, M. & Paigen, K. (1959). Density alterations associated with transducing ability in the bacteriophage lambda. J. molec. Biol. 1, 379386.Google Scholar
Zinder, N. D. (1959). Genetic interaction between bacteriophage and bacteria. In Perspectives in Virology, pp. 4353. New York: Wiley.Google Scholar
Zinder, N. D. & Lederberg, J. (1952). Genetic exchange in Salmonella. J. Bact. 64, 679699.CrossRefGoogle ScholarPubMed