Hostname: page-component-848d4c4894-cjp7w Total loading time: 0 Render date: 2024-06-17T09:34:07.678Z Has data issue: false hasContentIssue false

Recombination within the Y locus in Ascobolus immersus

Published online by Cambridge University Press:  14 April 2009

A. Kruszewska
Affiliation:
Department of General Genetics, Polish Academy of Sciences, Warsaw, Poland
W. Gajewski
Affiliation:
Department of General Genetics, Polish Academy of Sciences, Warsaw, Poland

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Mutants of the Y locus differed appreciably in their basic conversion frequencies (frequencies of conversion in one-point crosses) to wild type. The differences in the basic conversion frequencies in the opposite direction, i.e. from corresponding wild-type allele to mutant, were in general not pronounced. For some alleles frequencies of conversion in both directions were similar, but for the others they differed markedly. No evident correlation between the position of mutants on the map and their basic conversion frequencies was observed.

In two-point crosses in repulsion, the great majority of recombinant octads were of conversion type. In these crosses symmetry or asymmetry of conversion depended mainly on similarity or differences in basic conversion frequencies of mutants crossed. In crosses between mutants from different clusters the recombination frequencies were near to the sums of their basic conversion frequencies. Such ‘mutant specificity’ makes it impossible to establish the linear order of mutants on the basis of recombination frequencies in two-point crosses.

The results of two-point crosses in repulsion between mutants within clusters pointed to the influence of one allele on the frequency of conversion of another one. This ‘marker effect’ was also evident in some three-point crosses.

The frequencies of simultaneous conversions in two-point crosses in coupling did not show negative correlation with the distances between the mutants involved.

It seems that many of the data presented here are most easily explained by recently developed hybrid DNA models.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1967

References

REFERENCES

Balbinder, E. (1962). The fine structure of the loci tryC and tryD of Salmonella typhimurium. II. Studies of reversion patterns and the behavior of specific alleles during recombination. Genetics, 47, 545559.CrossRefGoogle ScholarPubMed
Baranowska, H. (1964). Zastosowanie mutanta powodujacego powstawanie podwójnych spor do badania komplementacji w sporach Ascobolus immersus. M.Sc. Thesis, University of Warsaw.Google Scholar
Bernstein, H. (1962). On the mechanism of intragenic recombination. I. The rII region of bacteriophage T4. J. theoret. Biol. 3, 335353.CrossRefGoogle Scholar
Bernstein, H. (1964). On the mechanism of intragenic recombination. II. Neurospora crassa. J. theoret. Biol. 6, 347370.CrossRefGoogle ScholarPubMed
Ephrussi-Taylor, H., Sicard, A. M. & Kamen, R. (1965). Genetic recombination in DNA- induced transformation of Pneumococcus. I. The problem of relative efficiency of transforming factors. Genetics, 51, 455475.Google Scholar
Freese, E. (1957). The correlation effect for a histidine locus of Neurospora crassa. Genetics, 42, 671684.CrossRefGoogle ScholarPubMed
Hastings, P. J. & Whitehouse, H. L. K. (1964). A polaron model of genetic recombination by the formation of hybrid DNA. Nature, Lond. 201, 10521054.Google Scholar
Holliday, R. (1962). Mutation and replication in Ustilago maydis. Genet. Res. 3, 472486.Google Scholar
Holliday, R. (1964). A mechanism for gene conversion in fungi. Genet. Res. 5, 282304.Google Scholar
Ishikawa, T. (1962). Genetic studies of ad-8 mutants in Neurospora crassa. I. Genetic fine structure of the ad-8 locus. Genetics, 47, 11471161.Google Scholar
Kitani, Y. (1962). Three kinds of transreplication in Sordaria fimicola. Jap. J. Genet. 37, 131146.Google Scholar
Kitani, Y., Olive, L. S. & El-Ani, A. S. (1961). Transreplication and crossing-over in Sordaria fimicola. Science, N.Y. 134, 668669.Google Scholar
Kitani, Y., Olive, L. S. & El-Ani, A. S. (1962). Genetics of Sordaria fimicola. V. Aberrant segregation at the glocus. Am. J. Bot. 49, 697706.Google Scholar
Lacks, S. (1966). Integration efficiency and genetic recombination in pneumococcal transformation. Genetics, 53, 207235.CrossRefGoogle ScholarPubMed
Lederberg, J. (1955). Recombination mechanisms in bacteria. J. cell. comp. Physiol. 45 (Suppl. 2), 75107.Google Scholar
Lissouba, P. (1961). Mise en évidence d'une unité génétique polarisée et essai d'analyse d'un cas d'interférence négative. Ann. sci. nat. Bot. et Biol. végétale, ser. 12, 1, 641720.Google Scholar
Lissouba, P. & Rizet, G. (1960). Sur l'existence d'une unité génétique polarisée ne subissant que des échanges non réciproques. C. r. hebd. Séanc. Acad. Sci., Paris, 250, 34083410.Google Scholar
Lissouba, P., Mousseau, J., Rizet, G. & Rossignol, J. L. (1962). Fine structure of genes in the ascomycete Ascobolus immersus. Adv. Genet. 11, 343380.Google Scholar
Makarewicz, A. (1964). First results of genetic analysis in Series 726 of Ascobolus immersus. Acta Soc. Bot. Pol. 33, 18.CrossRefGoogle Scholar
Margolin, P. (1963). Genetic fine structure of the leucine operon in Salmonella. Genetics, 48, 441457.Google Scholar
Mitchell, M. B. (1955). Aberrant recombination of pyridoxine mutants of Neurospora. Proc. natn. Acad. Sci. U.S.A. 41, 215220.Google Scholar
Murray, N. E. (1961). Polarized recombination within the me-2 gene of Neurospora. Genetics, 46, 886.Google Scholar
Murray, N. E. (1963). Polarized recombination and fine structure within the me-2 gene of Neurospora crassa. Genetics, 48, 11631183.Google Scholar
Olive, L. S. (1959). Aberrant tetrads in Sordaria fimicola. Proc. natn. Acad. Sci. U.S.A. 45, 727732.CrossRefGoogle ScholarPubMed
Paszewski, A., Surzycki, S. & Mankowska, M. (1966). Chromosome maps in Ascobolus immersus. Acta Soc. Bot. Pol. 35, 181188.Google Scholar
Pettijohn, D. & Hanawalt, P. (1964). Evidence for repair-replication of ultraviolet damaged DNA in bacteria. J. molec. Biol. 9, 395410.CrossRefGoogle ScholarPubMed
Pritchard, R. H. (1960 a). Localized negative interference and its bearing on models of gene recombination. Genet. Res. 1, 124.CrossRefGoogle Scholar
Pritchard, R. H. (1960 b). The bearing of recombination analysis at high resolution on genetic fine structure in Aspergillus nidulans and the mechanism of recombination in higher organisms. Symp. Soc. gen. Microbiol. 10, 155180.Google Scholar
Putrament, A. (1964). Mitotic recombination in the paba-l cistron of Aspergillus nidulans. Genet. Res. 5, 316327.Google Scholar
Ravin, A. W. & Iyer, V. N. (1962). Genetic mapping of DNA: influence of the mutated configuration on the frequency of recombination along the length of the molecule. Genetics, 47, 13691384.Google Scholar
Rizet, G., Engelmann, N., Lefort, C., Lissouba, P. & Mousseau, J. (1960). Sur un Ascomycète intéressant pour l'étude de certains aspects du problème de la structure du gène. C. r. hebd. Séanc. Acad. Sci., Paris, 250, 20502052.Google Scholar
Rizet, G. & Rossignol, J. L. (1963). Recombination mechanisms within a complex locus in Ascobolus immersus. Com. XI Int. Congr. Genet, (unpublished).Google Scholar
Rossignol, J. L. (1964). Phenomènes de recombinaison intragénique et unité fonctionnelle d'un locus chez l'Ascobolus immersus. Ph.D. Thesis, University of Paris.Google Scholar
Setlow, R. B. & Carrier, W. L. (1964). The disappearance of thymine dimers from DNA: an error-correcting mechanism. Proc. natn. Acad. Sci., U.S.A. 51, 226231.CrossRefGoogle ScholarPubMed
Sicard, A. M. & Ephrussi-Taylor, H. (1965). Genetic recombination in DNA-induced transformation of Pneumococcus. II. Mapping the amiA region. Genetics, 52, 12071227.Google Scholar
Siddiqi, O. H. (1962). The fine genetic structure of the paba-l region of Aspergillus nidulans. Genet. Res. 3, 6989.Google Scholar
Siddiqi, O. H. & Putrament, A. (1963). Polarized negative interference in the paba-l region of Aspergillus nidulans. Genet. Res. 4, 1220.Google Scholar
Smith, D. A. (1961). Some aspects of the genetics of methionineless mutants of Salmonella typhimurium. J. gen. Microbiol. 24, 335353.Google Scholar
Stadler, D. R. & Towe, A. M. (1963). Recombination of allelic cysteine mutants in Neuro- spora. Genetics, 48, 13231344.Google Scholar
Tessman, I. (1965). Genetic ultrafine structure in the T4rII region. Genetics, 51, 6375.Google Scholar
Whitehouse, H. L. K. (1963). A theory of crossing-over by means of hybrid deoxyribonucleic acid. Nature, Lond. 199, 10341040.Google Scholar
Whitehouse, H. L. K. (1965). Crossing-over. Sci. Prog. Lond. 53, 285296.Google Scholar
Whitehouse, H. L. K. & Hastings, P. J. (1965). The analysis of genetic recombination on the polaron hybrid DNA model. Genet. Res. 6, 2792.Google Scholar
Yanofsky, C. & Crawford, I. P. (1959). The effects of deletions, point mutations, reversions and suppressor mutations on the two components of the tryptophan synthetase of Escherichia coli. Proc. natn. Acad. Sci. U.S.A. 45, 10161026.Google Scholar