Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-23T19:06:25.225Z Has data issue: false hasContentIssue false

Post-settlement viability in the American oyster (Crassostrea virginica): an overdominant phenotype

Published online by Cambridge University Press:  14 April 2009

E. Zouros
Affiliation:
Department of Biology, Dalhousie University, Halifax, Nova Scotia B3H 4J1
Shiva M. Singh
Affiliation:
Department of Zoology, University of Western Ontario, London, Ontario N6A 5B7
David W. Foltz
Affiliation:
Department of Biology, Dalhousie University, Halifax, Nova Scotia B3H 4J1
André L. Mallet
Affiliation:
Department of Biology, Dalhousie University, Halifax, Nova Scotia B3H 4J1
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The degree of heterozygosity as determined by electrophoretic analysis of three or four polymorphic loci correlates positively with survival in age groups of the American oyster (Crassostrea virginica) collected as spat from two different natural populations. The phenomenon is shown to operate in ages from 2 weeks (post-settlement) to 3 years and appears to be general in populations of marine molluscs. The most likely explanation for this result is that heterozygosity improves survival through its effect on growth (heterozygotes grow faster). The effects of individual loci on viability are independent of each other. A direct involvement of the enzyme polymorphisms is the most probable genetic interpretation of the data, but associative overdominance cannot be excluded.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1983

References

REFERENCES

Ayala, F. J. (1982). Genetic variation in natural populations: Problem of electrophoretically cryptic alleles. Proceedings of the National Academy of Sciences, U.S.A. 79, 550554.CrossRefGoogle ScholarPubMed
Beaumont, A. R. (1982). Variations in heterozygosity at two loci between year classes of a population of Chlamys opercularis (L.) from a Scottish sea-loch. Marine Biology Letters 3, 2533.Google Scholar
Berger, E. (1976). Heterosis and the maintenance of enzyme polymorphism. American Naturalist 110, 823839.CrossRefGoogle Scholar
Black, F. L. & Salzano, F. M. (1981). Evidence for heterosis in the HLA system. American Journal of Human Genetics 33, 894899.Google ScholarPubMed
Buroker, N. E. (1979). Overdominance of a muscle protein (Mp-1) locus in the Japanese oyster, Crassostrea gigas (Ostreidae). Journal of the Fisheries Research Board of Canada 36, 13131318.CrossRefGoogle Scholar
Chaisson, R. E., Serunian, L. A. & Schopf, T. J. M. (1976). Allozyme variation between two marshes and possible heterozygote superiority within a marsh in the bivalve Modiolus demissus. Biological Bulletin, Marine Biological Laboratory, Woods Hole 151, 404.Google Scholar
Chakraborty, R. (1981). The distribution of the number of heterozygous loci in an individual in natural populations. Genetics 98, 461466.CrossRefGoogle Scholar
Clegg, M. T., Kahler, A. L. & Allard, R. W. (1978). Estimation of life cycle components of selection in an experimental plant population. Genetics 89, 765792.CrossRefGoogle Scholar
Crow, J. F. (1972). Darwinian and non-Darwinian evolution. In Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability, Volume V (ed. Lecan, L. M., Neyman, J. and Scott, E. L.). Berkeley: University of California Press.Google Scholar
Dobzhansky, Th., Spassky, B. & Tidwell, T. (1963). Genetics of natural populations. XXXII. Inbreeding and the mutational and balanced genetic loads in natural populations of Drosophila pseudoobscura. Genetics 48, 361373.CrossRefGoogle Scholar
Eanes, W. F. (1978). Morphological variance and enzyme heterozygosity in the monarch butterfly. Nature 276, 263264.CrossRefGoogle Scholar
Fincham, J. R. S. (1972). Heterozygous advantage as a likely general basis for enzyme polymorphisms. Heredity 28, 387391.CrossRefGoogle ScholarPubMed
Fujio, Y., Nakamura, Y. & Sugita, M. (1979). Selective advantage of heterozygotes at catalase locus in the Pacific oyster, Crassostrea gigas. Japanese Journal of Genetics 54, 359366.Google Scholar
Gillespie, J. H. & Langley, C. H. (1974). A general model to account for enzyme variation in natural populations. Genetics 76, 837848.CrossRefGoogle ScholarPubMed
Johnson, A. G. & Utter, F. M. (1975). Population differences of aspartate aminotransferase and peptidase in the bay mussel Mytilus edulis. Animal Blood roups and Biochemical Genetics 6, 7180.CrossRefGoogle ScholarPubMed
Jones, R. (1958). Lee's phenomenon of ‘apparent change in growth-rate’ with particular reference to haddock and plaice. International Commission for the Northwest Atlantic Fisheries, Special Publication, no. 1.Google Scholar
Kat, P. W. (1982). The relationship between heterozygosity for enzyme loci and developmental homeostasis in peripheral populations of aquatic bivalves (Unionidae). American Naturalist 119, 824832.CrossRefGoogle Scholar
Koehn, R. K. & Shumway, S. E. (1982). A genetic/physiological explanation for differential growth rate among individuals of the American oyster, Crassostrea virginica (Gmelin). Marine Biology Letters 3, 3542.Google Scholar
Koehn, R. K., Milkman, R. & Mitton, J. B. (1976). Population genetics of marine pelecypods. IV. Selection, migration and genetic differentiation in the blue mussel Mytilus edulis. Evolution 30, 232.CrossRefGoogle ScholarPubMed
Koehn, R. K., Newell, R. I. E. & Immermann, F. (1980). Maintenance of an aminopeptidase allele frequency cline by natural selection. Proceedings of the National Academy of Sciences, U.S.A. 77, 53855389.CrossRefGoogle ScholarPubMed
Koehn, R. K., Turano, F. J. & Mitton, J. B. (1973). Population genetics of marine pelecypods. II. Genetic differences in microhabitats of Modiolus demissus. Evolution 27, 100105.CrossRefGoogle ScholarPubMed
Leigh-Brown, A. J. & Langley, C. H. (1979). Reevaluation of level of genie heterozygosity in natural population of Drosophila melanogaster by two-dimensional electrophoresis. Proceedings of the National Academy of Sciences, U.S.A. 76, 23812384.CrossRefGoogle Scholar
Levene, H., Lerner, I. M., Sokoloff, A., Ho, F. K. & Franklin, I. R. (1965). Genetic load in Tribolium. Proceedings of the National Academy of Sciences, U.S.A. 53, 10421050.CrossRefGoogle ScholarPubMed
Levinton, J. S. & Fundiller, D. L. (1975). An ecological and physiological approach to the study of biochemical polymorphisms. In Proceedings of the Ninth European Marine Biology Symposium (ed. Barnes, H.). Aberdeen, Scotland: Aberdeen University Press.Google Scholar
Lewontin, R. C. (1974). The Genetic Basis of Evolutionary Change. New York: Columbia University Press.Google Scholar
McConkey, E. H., Taylor, B. J. & Phan, D. (1979). Human heterozygosity: a new estimate. Proceedings of the National Academy of Sciences, U.S.A. 76, 65006504.CrossRefGoogle ScholarPubMed
Mitton, J. B. & Koehn, R. K. (1975). Genetic organization and adaptive response of allozymes to ecological variables in Fundulus heteroclitus. Genetics 79, 97111.CrossRefGoogle ScholarPubMed
Mitton, J. B. & Pierce, B. A. (1980). The distribution of individual heterozygosity in natural populations. Genetics 95, 10431054.CrossRefGoogle ScholarPubMed
Ohta, T. (1971). Associative overdominance caused by linked detrimental mutations. Genetical Research 18, 277286.CrossRefGoogle Scholar
Racine, R. R. & Langley, C. H. (1980). Genetic heterozygosity in a natural population of Mus musculus assessed using two-dimensional electrophoresis. Nature 283, 855857.CrossRefGoogle Scholar
Schaal, B. A. & Levin, D. A. (1976). The demographic genetics of Liatris cylindracea Michx. (Compositae). American Naturalist 110, 191206.CrossRefGoogle Scholar
Schull, W. J. & Neel, J. V. (1965). The Effects of Inbreeding on Japanese Children. New York: Harper & Row.Google Scholar
Schwartz, D. & Laughner, W. J. (1969). A molecular basis for heterosis. Science 166, 626627.CrossRefGoogle ScholarPubMed
Singh, S. M. & Zouros, E. (1978). Genetic variation associated with growth rate in the American oyster (Crassostrea virginica). Evolution 32, 342353.CrossRefGoogle Scholar
Sokal, R. R. & Rohlf, F. J. (1969). Biometry. San Francisco: W. H. Freeman.Google Scholar
Tinkle, D. W. & Selander, R. K. (1973). Age-dependent allozymic variation in a natural population of lizards. Biochemical Genetics 8, 231237.CrossRefGoogle Scholar
Tracey, M. L., Bellet, N. F. & Gravem, C. D. (1975). Excess allozyme homozygosity and breeding population structure in the mussel Mytilus californianus. Marine Biology 32, 303311.CrossRefGoogle Scholar
Watt, W. B. (1977). Adaptation at specific loci. I. Natural selection on phosphoglucose isomerase of Colias butterflies: biochemical and population aspects. Genetics 87, 177194.CrossRefGoogle ScholarPubMed
Wilkins, N. P. (1978). Length-correlated changes in heterozygosity at an enzyme locus in the scallop (Pecten maximus L.). Animal Blood Groups and Biochemical Genetics 9, 6977.CrossRefGoogle Scholar
Zouros, E. & Foltz, D. W. (1982). Possible explanations of heterozygote deficiency in bivalve molluscs. Malacologia (in the Press).Google Scholar
Zouros, E., Singh, S. M. & Miles, H. E. (1980). Growth rate in oysters: an overdominant phenotype and its possible explanations. Evolution 34, 856867.CrossRefGoogle ScholarPubMed