Hostname: page-component-77c89778f8-cnmwb Total loading time: 0 Render date: 2024-07-21T09:20:55.398Z Has data issue: false hasContentIssue false

The occurrence of long ribosomal transcripts homologous to type I insertions in bobbed mutants of Drosophila melanogaster

Published online by Cambridge University Press:  14 April 2009

Mohamed Makni*
Affiliation:
Laboratoire de Génétique, Faculté des Sciences, 1060 Tunis, Tunisie
Mohamed Marrakchi
Affiliation:
Laboratoire de Génétique, Faculté des Sciences, 1060 Tunis, Tunisie
Nicole Prud'Homme
Affiliation:
Centre de Génétique Moléculaire, Centre National de la Recherche Scientifique, 91190 Gif-sur-Yvelte, France
*
* Corresponding author.

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In Drosophila melanogaster up to two thirds of the rDNA genes contain insertion sequences of two types in the 28S coding region. Comparison of the ribosomal insertion transcripts in the wild type and in two bobbed mutants reared at two temperatures showed that the level of type I transcripts is dependent on both the number of genes with type I insertions in the bobbed loci and the intensity of bobbed phenotype. Importantly, a long transcript of 8·7 kb hybridized to the ribosomal probe, the INS I probe and also to the restriction fragment of the rDNA downstream of the point of insertion was found in one bobbed mutant. This result and also those from sandwich hybridization indicate that some interrupted ribosomal genes are functional.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1989

References

Appels, R. & Hilliker, A. J. (1982). The cytogenetic boundaries of the rDNA region within heterochromatin of the X chromosome of Drosophila melanogaster and their relation to male meiotic pairing site. Genetical Research 39, 149156.CrossRefGoogle Scholar
Birnboim, H. C. & Doly, J. (1979). A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Research 7, 15131523.CrossRefGoogle ScholarPubMed
Chooi, W. Y. (1979). The occurrence of long transcription units among the X and Y ribosomal genes of Drosophila melanogaster: transcription of insertion sequences. Chromosoma 74, 5774.CrossRefGoogle ScholarPubMed
Coen, E. S. & Dover, G. A. (1982). Multiple Pol I initiation sequences in rDNA spacers of Drosophila melanogaster. Nucleic Acids Research 10, 70177026.CrossRefGoogle Scholar
Cooper, K. W. (1959). Cytogenic analysis of major hetero-chromatic elements (especially Xh and Y) in Drosophila melanogaster and the theory of ‘heterochromatin’. Chromosoma 10, 535588.CrossRefGoogle Scholar
Dawid, I. B. & Botchan, P. (1977). Sequences homologous to ribosomal insertions occur in the Drosophila genome outside the nucleolus organizer. Proceedings of the National Academy of Sciences (USA) 74, 42334237.CrossRefGoogle ScholarPubMed
Dawid, I. B., Wellauer, P. K. & Long, E. O. (1978). Ribosomal DNA in Drosophila melanogaster: I. Isolation and characterization of cloned fragments. Journal of Molecular Biology 126, 749768.CrossRefGoogle ScholarPubMed
De Cicco, D. V. & Glover, D. M. (1983). Amplification of rDNA and type I sequences in Drosophila males deficient in rDNA. Cell 32, 12171225.CrossRefGoogle ScholarPubMed
Dunn, A. R. & Hassel, J. A. (1977). A novel method to map transcripts: evidence for homology between an Adeno virus mRNA and discrete multiple regions of the viral genome. Cell, 12, 2336.CrossRefGoogle Scholar
England, P. R., Stokes, H. W. & Frankham, R. (1988). Clustering of rDNA containing type I insertion sequence in the distal nucleolus organizer of Drosophila melanogaster: implications for the evolution of X and Y rDNA arrays. Genetical Research 51, 209216.CrossRefGoogle Scholar
Glover, D. M. & Hogness, D. S. (1977). A novel arrangement of the 18S and 28S sequences in a repeating unit of Drosophila melanogaster. Cell 10, 167176,CrossRefGoogle Scholar
Glover, D. M., White, R. L., Finnegan, D. J. & Hogness, D. S. (1975). Characterization of six cloned DNAs from Drosophila melanogaster, including one that contains the genes for rRNA. Cell 5, 149157.CrossRefGoogle ScholarPubMed
Jolly, D. J. & Thomas, C. A. (1980). Nuclear RNA transcripts from Drosophila melanogaster ribosomal RNA genes containing introns. Nucleic Acids Research 8, 6784.CrossRefGoogle ScholarPubMed
Kidd, S. J. & Glover, D. M. (1981). Drosophila melanogaster ribosomal DNA containing type II insertions is variably transcribed in different strains and tissues. Journal of Molecular Biology 151, 645662.CrossRefGoogle ScholarPubMed
Labella, T., Vicari, L., Manzi, A. & Graziani, F. (1983). Expression of rDNA insertions during rDNA magnification in Drosophila melanogaster. Molecular and General Genetics 190, 486493.CrossRefGoogle Scholar
Long, E. O., Collins, M., Kiefer, B. I. & Dawid, I. B. (1981). Expression of the ribosomal DNA insertions in bobbed mutants of Drosophila melanogaster. Molecular and General Genetics 182, 377384.CrossRefGoogle ScholarPubMed
Long, E. O., & Dawid, I. B. (1979). Expression of ribosomal DNA insertions in Drosophila melanogaster. Cell 18, 11851196.CrossRefGoogle ScholarPubMed
Long, E. O. & Dawid, I. B. (1980 a). Repeated genes in Eucaryotes. Annual Review of Biochemistry 49, 727764.CrossRefGoogle Scholar
Long, E. O. & Dawid, I. B. (1980 b). Alternative pathways in the processing of ribosomal RNA precursor in Drosophila melanogaster. Journal of Molecular Biology 138, 873878.CrossRefGoogle ScholarPubMed
Long, E. O., Rebbert, M. L. & Dawid, I. B. (1980). Structure and expression of ribosomal RNA genes of Drosophila melanogaster interrupted by type 2 insertions. Cold Spring Harbor Symposium on Quantitative Biology 45, 667672.CrossRefGoogle Scholar
Makni, M. & Marrakchi, M. (1978). Mise en evidence d'une mutation bobbed à effet cryosensible chez Drosophila melanogaster. Biologie Cellulaire 33, 39a.Google Scholar
Marrakchi, M. & Prud'homme, N. (1971). A study of bobbed mutants induced by ethyl methane sulfonate in Drosophila melanogaster. Biochemical and Biophysical Research Communications 43, 273277.CrossRefGoogle Scholar
Pellegrini, M., Manning, J. & Davidson, N. (1977). Sequence arrangement of the rDNA of Drosophila melanogaster. Cell 10, 213224.CrossRefGoogle ScholarPubMed
Ritossa, F. M., Atwood, K. C. & Spiegelman, S. (1966). A molecular explanation of bobbed mutants of Drosophila as partial deficiencies of ribosomal DNA. Genetics 54, 819834.CrossRefGoogle ScholarPubMed
Ritossa, F. M. & Spiegelman, S. (1965). Localization of DNA complementary to ribosomal RNA in the nucleolus organizer region of Drosophila melanogaster. Proceedings of the National Academy of Sciences (USA) 53, 737745.CrossRefGoogle ScholarPubMed
Roiha, H. & Glover, D. M. (1980). Characterization of complete type II insertions in cloned segments of ribosomal DNA from Drosophila melanogaster. Journal of Molecular Biology 140, 341355.CrossRefGoogle Scholar
Roiha, H., Miller, J. R., Woods, L. C. & Glover, D. M. (1981). Arrangements and rearrangements of sequences flanking the two types of rDNA insertions in Drosophila melanogaster. Nature 290, 749753.CrossRefGoogle Scholar
Sharp, Z. D., Gandhi, V. V. & Procunier, J. D. (1983). X chromosome nucleolus organizer mutants which alter major type I repeat multiplicity in Drosophila melanogaster. Molecular and General Genetics 190, 438443.CrossRefGoogle ScholarPubMed
Southern, E. M. (1975). Detection of specific sequences among DNA fragments separated by gel electrophoresis. Journal of Molecular Biology 98, 503517.CrossRefGoogle ScholarPubMed
Terracol, R. (1986). Transcription of rDNA insertions in bobbed mutants of Drosophila melanogaster. Genetical Research 48, 167174.CrossRefGoogle ScholarPubMed
Terracol, R. & Prud'homme, N. (1986). Differential elimination of rDNA genes in bobbed mutants of Drosophila melanogaster. Molecular and Cellular Biology 6, 10231031.Google ScholarPubMed
Thomas, P. S. (1980). Hybridization of denatured RNA and small DNA fragment transferred to nitrocellulose. Proceedings of the National Academy of Sciences (USA) 77, 52015205.CrossRefGoogle ScholarPubMed
Tullis, R. H. & Rubin, H. (1980). Calcium protects DNase I from proteinase K: a new method for the removal of contaminating RNase from DNase I. Analytical Biochemistry 107, 260264.CrossRefGoogle ScholarPubMed
Wahl, G. M., Stern, M. & Stark, G. R. (1979). Efficient transfer of large DNA fragments from agarose gels to diazobenzyloxymethyl paper and rapid hybridization using dextran sulfate. Proceedings of the National Academy of Sciences (USA). 76, 36833687.CrossRefGoogle ScholarPubMed
Wellauer, P. K. & Dawid, I. B. (1977). The structural organization of ribosomal DNA in Drosophila melanogaster. Cell 10, 193212.CrossRefGoogle ScholarPubMed
Wellauer, P. K., Dawid, I. B. & Tartof, K. D. (1978). X and Y chromosomal ribosomal DNA of Drosophila: comparison of spacers and insertions. Cell 14, 269278.CrossRefGoogle ScholarPubMed
White, R. L. & Hogness, D. S.(1977). R loop mapping of 18S and 28S sequences in the long and short repeating units of Drosophila melanogaster rDNA. Cell 10, 177192.CrossRefGoogle Scholar