Hostname: page-component-848d4c4894-wzw2p Total loading time: 0 Render date: 2024-05-25T22:00:17.365Z Has data issue: false hasContentIssue false

Nucleotide sequences of highly repeated DNAs; compilation and comments

Published online by Cambridge University Press:  14 April 2009

George L. Gabor Miklos
Affiliation:
Department of Population Biology, Research School of Biological Sciences, The Australian National University, Canberra, A.C.T., Australia
Amanda Clare Gill
Affiliation:
Department of Population Biology, Research School of Biological Sciences, The Australian National University, Canberra, A.C.T., Australia

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The nucleotide sequence data from highly repeated DNAs of inverte-brates and mammals are summarized and briefly discussed. Very similar conclusions can be drawn from the two data bases. Sequence complexities can vary from 2 bp to at least 359 bp in invertebrates and from 3 bp to at least 2350 bp in mammals. The larger sequences may or may not exhibit a substructure. Significant sequence variation occurs for any given repeated array within a species, but the sources of this heterogeneity have not been systematically partitioned. The types of alterations in a basic repeating unit can involve base changes as well as deletions or additions which can vary from 1 bp to at least 98 bp in length. These changes indicate that sequence per se is unlikely to be under significant biological constraints and may sensibly be examined by analogy to Kimura's neutral theory for allelic variation. It is not possible with the present evidence to discriminate between the roles of neutral and selective mechanisms in the evolution of highly repeated DNA.

Tandemly repeated arrays are constantly subjected to cycles of amplification and deletion by mechanisms for which the available data stem largely from ribosomal genes. It is a matter of conjecture whether the solutions to the mechanistic puzzles involved in amplification or rapid redeployment of satellite sequences throughout a genome will necessarily give any insight into biological functions.

The lack of significant somatic effects when the satellite DNA content of a genome is significantly perturbed indicates that the hunt for specific functions at the cellular level is unlikely to prove profitable.

The presence or in some cases the amount of satellite DNA on a chromosome, however, can have significant effects in the germ line. There the data show that localized condensed chromatin, rich in satellite DNA, can have the effect of rendering adjacent euchromatic regions rec, or of altering levels of recombination on different chromosomes. No data stemming from natural populations however are yet available to tell us if these effects are of adaptive or evolutionary significance.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1982

References

REFERENCES

Amos, A. & Dover, G. A. (1981). The distribution of repetitive DNAs between regular and supernumerary chromosomes in species of Glossina: a two step process in the origin of supernumeraries. Chromosoma 81, 673690.Google Scholar
Baker, W. K. (1971). Evidence for position effect suppression of the ribosomal RNA cistrons in Drosophila melanogaster. Proceedings of the National Academy of Sciences (USA) 68, 24722476.CrossRefGoogle ScholarPubMed
Barlow, P. (1973). The influence of inactive chromosomes on human development. Humangenetik 17, 105136.Google Scholar
Barnes, S. R., Webb, D. A. & Dover, G. (1978). The distribution of satellite and main-band DNA components in the melanogaster species subgroup of Drosophila. Chromosoma (Berlin) 67, 341363.Google Scholar
Beauchamp, R. S., Mitchell, A. R., Buckland, R. A. & Bostock, C. J. (1979). Specific arrangements of human satellite III DNA sequences in human chromosomes. Chromosoma (Berlin) 71, 153166.CrossRefGoogle ScholarPubMed
Bedbrook, J. R., Jones, J., O'Dell, M., Thompson, R. D. & Flavell, R. B. (1980 a). Molecular characterization of telomeric heterochromatin in Secale species. Cell 19, 545560.CrossRefGoogle Scholar
Bedbrook, J. R., O'Dell, M. & Flavell, R. B. (1980 b). Amplification of rearranged sequences in cereal plants. Nature 288, 133137.CrossRefGoogle Scholar
Bennett, M. D. (1971). The duration of meiosis. Proceedings of the Royal Society B. 178, 259275.Google Scholar
Billings, P. C., Orf, J. W., Palmer, D. K., Talmage, D. A., Pan, C. G. & Blumenfeld, M. (1979). Anomalous electrophoretic mobility of Drosophila phosphorylated H1 histone: is it related to the compaction of satellite DNA into heterochromatin? Nucleic Acids Research 6, 21512164.CrossRefGoogle Scholar
Blumenfeld, M., Orf, J. W., Sina, B. J., Kreber, R. A., Callahan, M. A. & Snyder, L. A. (1978). Satellite DNA H1 histone, and heterochromatin in Drosophila virilis. Cold Spring Harbour Symposium on Quantitative Biology 42, 273276.Google Scholar
Bostock, C. J. (1980). A function for satellite DNA? Trends in Biochemical Sciences 5, 117119.CrossRefGoogle Scholar
Bostock, C. J., Gosden, J. R. & Mitchell, A. R. (1978). Localization of a male-specific DNA fragment to a sub-region of the human Y chromosome. Nature 272, 324328.Google Scholar
Brown, F. L., Musich, P. R. & Maio, J. J. (1979). The repetitive sequence structure of component a DNA and its relationship to the nucleosomes of the African green monkey. Journal of Molecular Biology 131, 777799.Google Scholar
Brown, S. D. M. & Dover, G. A. (1979). Conservation of sequences in related genomes of Apodemus: constraints on the maintenance of satellite DNA sequences. Nucleic Acids Research 6, 24232434.CrossRefGoogle ScholarPubMed
Brown, S. D. M. & Dover, G. A. (1980 a). The specific organisation of satellite DNA sequences on the X chromosome of Mus musculus: partial independence of chromosome evolution. Nucleic Acids Research 8, 781792.Google ScholarPubMed
Brown, S. D. M. & Dover, G. A. (1980 b). Conservation of segmental variants of satellite DNA of Mus musculus in a related species: Mus spretus. Nature 285, 4749.CrossRefGoogle Scholar
Brutlag, D. L. (1980). Molecular arrangement and evolution of heterochromatic DNA. In Annual Reviews of Genetics, vol. 14 (ed. Roman, H. L., Campbell, A. and Sandier, L. M.), pp. 121144.Google Scholar
Carlson, M. & Brutlag, D. (1979). Different regions of a complex satellite DNA vary in size and sequence of the repeating unit. Journal of Molecular Biology 135, 483500.CrossRefGoogle ScholarPubMed
Cavalier-Smith, T. (1978). Nuclear volume control by nucleoskeletal DNA, selection for cell volume and cell growth rate, and the solution of the DNA C-value paradox. Journal of Cell Science 34, 247278.CrossRefGoogle ScholarPubMed
Cavalier-Smith, T. (1980 a). r-and k-tactics in the evolution of protist developmental systems: cell and genome size, phenotype diversifying selection, and cell cycle patterns. BioSystems 12, 4359.Google Scholar
Cavalier-Smith, T. (1980 b). How selfish is DNA? Nature 285, 617618.CrossRefGoogle ScholarPubMed
Chahal, S. S., Matthews, H. R. & Bradbury, E. M. (1980). Acetylation of histone H4 and its role in chromatin structure and function. Nature 287, 7679.CrossRefGoogle ScholarPubMed
Chambers, C. A., Schell, M. P. & Skinner, D. M. (1978). The primary sequence of a crustacean satellite DNA containing a family of repeats. Cell 13, 97110.CrossRefGoogle ScholarPubMed
Christie, N. T. & Skinner, D. M. (1980 a). Evidence for nonrandom alterations in a fraction of the highly repetitive DNA of a eukaryote. Nucleic Acids Research 8, 279298.Google Scholar
Christie, N. T. & Skinner, D. M. (1980 b). Selective amplification of variants of a complex repeating unit in DNA of a crustacean. Proceedings of the National Academy of Sciences (USA) 77, 27862790.CrossRefGoogle ScholarPubMed
Cohen, E. H. & Bowman, S. C. (1979). Detection and location of three simple sequence DNAs in polytene chromosomes from virilis group species of Drosophila. Chromosoma (Berlin) 73, 327355.Google Scholar
Comings, D. E. & Okada, T. A. (1976). Fine structure of the heterochromatin of the kangaroo rat Dipodomys ordii, and examination of the possible role of actin and myosin in hetero-chromatin condensation. Journal of Cell Science 21, 465477.CrossRefGoogle Scholar
Comings, D. E., Harris, D. C., Okada, T. A. & Holmquist, G. (1977). Nuclear proteins. Experimental Cell Research 105, 349365.CrossRefGoogle ScholarPubMed
Cooke, H. J. & Hindley, J. (1979). Cloning of human satellite III DNA: different components are on different chromosomes. Nucleic Acids Research 6, 31773197.CrossRefGoogle ScholarPubMed
Cordeiro-Stone, M. & Lee, C. S. (1976). Studies on the satellite DNAs of Drosophila nasutoides: their buoyant densities, melting temperatures, reassociation rates and localizations in polytene chromosomes. Journal of Molecular Biology 104, 124.CrossRefGoogle ScholarPubMed
Cseko, Y. M. T., Dower, N. A., Minoo, P., Lowenstein, L., Smith, G. R., Stone, J. & Sederoff, R. (1979). Evolution of polypyrimidines in Drosophila. Genetics 92, 459484.Google Scholar
Donehower, L., Furlong, C., Gillespie, D. & Kurnit, D. (1980). DNA sequence of baboon highly repeated DNA: evidence for evolution by nonrandom unequal crossovers. Proceedings of the National Academy of Sciences (USA) 77, 21292133.Google Scholar
Doolittle, W. F. & Sapienza, C. (1980). Selfish genes, the phenotype paradigm and genome evolution. Nature 284, 601603.Google Scholar
Dover, G. (1978). DNA conservation and speciation: adaptive or accidental? Nature 272, 123124.Google Scholar
Dover, G. A. (1980). Problems in the use of DNA for the study of species relationships and the evolutionary significance of genomic differences. In Chemosystematics: principles and practice (ed. Bisby, F. A., Vaughn, J. G. & Wright, C. A.) (In the Press). London, New York, San Francisco: Academic Press.Google Scholar
Dover, G. A. & Coen, E. (1981). Springcleaning ribosomal DNA: a model for multigene evolution? Nature 290, 731732.CrossRefGoogle Scholar
Dover, G. & Doolittle, W. F. (1980). Modes of Genome evolution. Nature 288, 646647.Google Scholar
Flavell, R. B., O'Dell, M. & Hutchinson, J. (1981). Nucleotide sequence organization and evidence for sequence transloçation during evolution. Cold Spring Harbor Symposium 45 (In the Press).Google Scholar
Fry, K. & Salser, W. (1977). Nucleotide sequences of HS-α satellite DNA from Kangaroo Rat Dipodomys ordii and characterization of similar sequences in other rodents. Cell 12, 10691084.CrossRefGoogle ScholarPubMed
Gall, J. G. & Atherton, D. D. (1974). Satellite DNA sequences in Drosophila virilis. Journal of Molecular Biology 85, 633664.Google Scholar
Gosden, J. R., Mitchell, A. R., Buckland, R. A., Clayton, R. P. & Evans, H. J. (1975). The location of four human satellite DNAs on human chromosomes. Experimental Cell Research 92, 148158.Google Scholar
Gosden, J. R., Mitchell, A. R., Seuanez, H. N. & Gosden, C. M. (1977). The distribution of sequences complementary to human satellite DNAs I, II and IV in the chromosomes of chimpanzee (Pan troglodytes), Gorilla (gorilla gorilla) and Orang Utan (Pongo pygnaeus). Chromosoma (Berlin) 63, 253271.Google Scholar
Gosden, J. R., Lawrie, S. S. & Cooke, H. J. (1981). A cloned repeated DNA sequence in human chromosome heteromorphisms. Cytogenetics and Cellular Genetics (In the Press).CrossRefGoogle Scholar
Holmquist, G. P. & Dancis, B. (1979). Telomere replication, kinetochore organizers and satellite DNA evolution. Proceedings of the National Academy of Sciences (USA) 76, 45664570.Google Scholar
Horz, W. & Altenburger, W. (1981). Nucleotide sequence of mouse satellite DNA. Nucleic Acids Research 9, 683696.Google Scholar
Hsieh, T-S. & Brutlag, D. (1979 a). Sequence and sequence variation within the 1·688 g/cm3 satellite DNA of Drosophila melanogaster. Journal of Molecular Biology 135, 465481.Google Scholar
Hsieh, T-S. & Brutlag, D. (1979 b). A protein that preferentially binds Drosophila satellite DNA. Proceedings of the National Academy of Sciences (USA) 76, 726730.Google Scholar
Hutchinson, J., Rees, H. & Seal, A. G. (1979). An assay of the activity of supplementary DNA in Lolium. Heredity 43, 411421.CrossRefGoogle Scholar
Igo-Kemenes, T., Omori, A. & Zachau, H. G. (1980). Non-random arrangement of nucleosomes in satellite I containing chromatin of rat liver. Nucleic Acids Research 8, 53775390.Google Scholar
John, B. (1981). Heterochromatin variation in natural populations. Proceedings of the 7th International Chromosome Conference,Oxford (In the Press).Google Scholar
John, B. & Miklos, G. L. G. (1979). Functional aspects of satellite DNA and heterochromatin. In International Review of Cytology (ed. Bourne, G. H. and Danielli, J. F.), pp. 1114. New York, San Francisco, London: Academic Press.Google Scholar
Kao-Huang, Y., Revzin, A., Butler, A. P., O'Conner, P., Noble, D. W. & Von Hippel, P. H. (1977). Nonspecific DNA binding of genome-regulating proteins as a biological control mechanism: Measurement of DNA-bound Escherichia coli lac represser in vivo. Proceedings of the National Academy of Sciences (USA) 74, 42284232.CrossRefGoogle Scholar
Kimura, M. (1979). The neutral theory of molecular evolution. Scientific American 241, 94104.Google Scholar
Klein, H. L. & Petes, T. D. (1981). Intrachromosomal gene conversion in yeast. Nature 289, 144148.CrossRefGoogle ScholarPubMed
Klug, A., Jack, A., Viswamitra, M. A., Kennard, O., Sharked, Z. & Steitz, T. A. (1979). A hypothesis on a specific sequence - dependent conformation of DNA and its relation to the binding of the toc-repressor protein. Journal of Molecular Biology 131, 669680.CrossRefGoogle Scholar
Kurnit, D. M. (1979). Satellite DNA and heterochromatin variants: the case for unequal mitotic crossing over. Human Genetics 47, 169186.CrossRefGoogle ScholarPubMed
Lin, S. & Riggs, A. D. (1975). The general affinity of lac represser for E. coli DNA: Implications for gene regulation in procaryotes and eukaryotes. Cell 4, 107111.CrossRefGoogle Scholar
Macgregor, H. C. (1980). Recent developments in the study of lampbrush chromosomes. Heredity 44, 335.CrossRefGoogle Scholar
McKay, R. D. G., Borrow, M. & Cooke, H. J. (1978). The identification of a repeated DNA sequence involved in the karyotype polymorphism of the human Y chromosome. Cytogenetics and Cell Genetics 21, 1932.CrossRefGoogle ScholarPubMed
Maio, J. J., Brown, F. L. & Musich, P. R. (1977). Subunit structure of chromatin and the organization of eukaryotic highly repetitive DNA: Recurrent periodicities and models for the evolutionary origins of repetitive DNA. Journal of Molecular Biology 117, 637655.Google Scholar
Manuelidis, L. & Wu, J. C. (1978). Homology between human and simian repeated DNA. Nature 276, 9294.CrossRefGoogle ScholarPubMed
Matsumoto, Y., Yasuda, H., Mita, S., Marunouchi, T. & Yamada, M. (1980). Evidence for the involvement of HI histone phosphorylation in chromosome condensation. Nature 284, 181183.Google Scholar
Maynard-Smith, J. (1977). Why the genome does not congeal. Nature 268, 693696.CrossRefGoogle Scholar
Miklos, G. L. G. & John, B. (1979). Heterochromatin and satellite DNA in man: properties and prospects. American Journal of Human Genetics 31, 264280.Google ScholarPubMed
Miklos, G. L. G., Willcocks, D. A. & Baverstock, P. R. (1980). Restriction endonuclease and molecular analyses of three rat genomes with special reference to chromosome rearrangement and speciation problems. Chromosoma (Berlin) 76, 339363.CrossRefGoogle ScholarPubMed
Miklos, G. L. G. & Gill, A. C. (1981). The DNA sequences of cloned complex satellite DNAs from Hawaiian Drosophila and their bearing on satellite DNA sequence conservation. Chromosoma 82, 409427.Google Scholar
Miklos, G. L. G. (1981). Sequencing and manipulating highly repeated DNA. Systematics Association Special Volume Series. Academic Press (In the Press).Google Scholar
Mitchell, A. R., Beauchamp, R. S. & Bostock, C. J. (1979). A study of sequence homologies in four satellite DNAs of man. Journal of Molecular Biology 135, 127149.Google Scholar
Mullins, J. I. & Blumenfeld, M. (1979). Satellite Ic: a possible link between the satellite DNAs of D. virilis and D. melanogaster. Cell 17, 615621.Google Scholar
Musich, P. R., Brown, F. L. & Maio, J. J. (1977). Subunit structure of chromatin and the organisation of eukaryotic highly repetitive DNA: Nucleosomal proteins associated with a highly repetitive mammalian DNA. Proceedings of the National Academy of Sciences (USA) 74, 32973301.CrossRefGoogle ScholarPubMed
Musich, P. R., Brown, F. L. & Maio, J. J. (1980). Highly repetitive component a and related Alphoid DNAs in man and monkeys. Chromosoma 80, 331348.Google Scholar
Nagl, W. (1978). Endopolyploidy and polyteny in differentiation and evolution. Amsterdam: North-Holland. Nature. News and Views, (a) How selfish is DNA (1980) 285, 617620. (6) Selfish DNA (1980) 288, 645–648.Google Scholar
Olmo, E. & Morescalchi, A. (1978). Genome and cell sizes in frogs: a comparison with salamanders. Experientia 34, 4446.Google Scholar
Orgel, L. E. & Crick, F. H. C. (1980). Selfish DNA: the ultimate parasite. Nature 284, 604607.Google Scholar
Orgel, L. E., Crick, F. H. C. & Sapienza, C. (1980). Selfish DNA. Nature 288, 645646.CrossRefGoogle ScholarPubMed
Pech, M., Igo-Kemenes, T. & Zachau, H. G. (1979 a). Nucleotide sequence of a highly repetitive component of rat DNA. Nucleic Acids Research 7, 417432.Google Scholar
Pech, M., Streeck, R. E. & Zachau, H. G. (1979 b). Patchwork structure of a bovine satellite DNA. Cell 18, 883893.CrossRefGoogle ScholarPubMed
Petes, T. D. (1980). Unequal meiotic recombination within tandem arrays of veast ribosomal DNA genes. Cell 19, 765774.CrossRefGoogle Scholar
Poschl, E. & Steeeck, R. E. (1980). Prototype sequence of bovine 1.720 satellite DNA. Journal of Molecular Biology 143, 147153.CrossRefGoogle ScholarPubMed
Rees, H. & Dale, P. J. (1974). Chiasmata and variability in Lolium and Festuca populations. Chromosoma (Berlin) 47, 335351.Google Scholar
Roizes, G., Pages, M. & Lecou, C. (1980). The organization of the long range periodicity calf satellite DNA I variants as revealed by restriction enzyme analysis. Nucleic Acids Research 8, 37793792.Google Scholar
Rosenberg, H., Singer, M. & Rosenberg, M. (1978). Highly reiterated sequences of Simian simian simian simian simian. Science 200, 394402.Google Scholar
Rubin, C. M., Deininger, P. L., Houck, C. M. & Schmid, C. W. (1980). A dimer satellite sequence in bonnet monkey DNA consists of distinct monomer subunits. Journal of Molecular Biology 136, 151167.Google Scholar
Salser, W., Bowen, S., Browne, D., El Adli, F., Federoff, N., Fry, K., Heindell, H., Paddock, G., Poon, R., Wallace, B. & Whitcome, P. (1976). Investigation of the organization of mammalian chromosomes at the DNA sequence level. Federation Proceedings 35, 2335.Google Scholar
Scherer, S. & Davis, R. W. (1980). Recombination of Dispersed repeated DNA sequences in yeast. Science 209, 13801384.CrossRefGoogle ScholarPubMed
Selsing, E. & Arnott, S. (1976). Conformations of A, T-rich DNAs. Nucleic Acids Research 3, 24432450.Google Scholar
Schmookler-Reis, R. J. & Biro, P. A. (1978). Sequence and evolution of mouse satellite DNA. Journal of Molecular Biology 121, 357374.Google Scholar
Skinner, D. M. (1977). Satellite DNA's. Bio Science 27, 790796.Google Scholar
Southern, E. M. (1970). Base sequence and evolution of guinea-pig a satellite DNA. Nature 227, 794798.CrossRefGoogle Scholar
Southern, E. M. (1975). Long range periodicities in mouse satellite DNA. Journal of Molecular Biology 94, 5169.Google Scholar
Stanley, S. M. (1975). A theory of evolution above the species level. Proceedings of the National Academy of Sciences (USA). 72, 646650.Google Scholar
Szostak, J. W. & Wu, R. (1980). Unequal crossing over in the ribosomal DNA of Saccharomyces cerevisiae. Nature 284, 426430.Google Scholar
Thayer, R. E., Singer, M. F. & Mccutchan, T. F. (1981). Sequence relationships between single repeat units of highly reiterated African green monkey DNA. Nucleic Acids Research 9, 169181.Google Scholar
Timberlake, W. E. (1978). Low repetitive DNA content in Aspergillus nidulans. Science 202, 973975.Google Scholar
Varley, M. J., Macgeegor, H. C. & Erba, H. P. (1980). Satellite DNA is transcribed on lampbrush chromosomes. Nature 283, 686688.Google Scholar
Walker, P. M. B. (1979). Genes and non-coding DNA sequences. In Human Genetics: possibilities and realities. Exerpta Medica, pp. 2545. Amsterdam.Google Scholar
Will, H. & Bautz, E. K. F. (1980). Immunological identification ofachromocenter – associated protein in polytene chromosomes of Drosophila. Experimental Cell Research 125, 401410.CrossRefGoogle ScholarPubMed
Wheeler, L. L., Arriohi, F., Cordeiro-Stone, M. & Lee, C. S. (1978). Localization of Drosophila nasutoides satellite DNAs in metaphase chromosomes Chromosoma (Berlin) 70, 4150.Google Scholar
Wu, J. C. & Manuelidis, L. (1980). Sequence definition and organisation of a human repeated DNA. Journal of Molecular Biology 142, 363386.Google Scholar
Yamamoto, M. & Miklos, G. L. G. (1977). Genetic dissection of heterochromatin in Drosophila: The role of basal X heterochromatin in meiotic sex chromosome behaviour. Chromosoma (Berlin) 60, 283296.CrossRefGoogle ScholarPubMed
Yamamoto, M. & Miklos, G. L. G. (1978). Genetic studies on heterochromatin in Drosophila melanogaster and their implications for the functions of satellite DNA. Chromosoma (Berlin) 66, 7198.Google Scholar
Yamamoto, M. (1979 a). Cytological studies of heterochromatin function in the Drosophila melanogaster male: autosomal meiotic pairing. Chromosoma (Berlin) 72, 293328.Google Scholar
Yamamoto, M. (1979 b). Interchromosomal effects of heterochromatic deletions on recombination in Drosophila melanogaster. Genetics 93, 437448.Google Scholar