Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-26T03:10:10.354Z Has data issue: false hasContentIssue false

Mutations relieving hypersensitivity to paromomycin caused by ribosomal suppressors in Podospora anserina

Published online by Cambridge University Press:  14 April 2009

Evelyne Coppin-Raynal
Affiliation:
Laboratoire de Génétique de l'Université de Paris-Sud, Bât. 400 (Laboratoire associé au CNRS no. 86) 91405 ORSAY Cedex, France
Denise Le Coze
Affiliation:
Laboratoire de Génétique de l'Université de Paris-Sud, Bât. 400 (Laboratoire associé au CNRS no. 86) 91405 ORSAY Cedex, France
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In the fungus Podospora anserina, mutations were selected which relieved the hypersensitivity to paromomycin caused by four suppressors assumed to be ribosomal ambiguity mutations (su1–31, su1–49, su1–60, su2–5). Our first purpose was to isolate new antisuppressor mutations and in fact a new antisuppressor gene, AS7 was uncovered. The AS7–1 mutant displays a pleiotropic phenotype and particularly a sporulation defect. On the other hand, a new su1 mutant was obtained which acts as a suppressor and also as an antisuppressor: it can specifically reduce the suppressor effect of certain su2 mutations. This property of some su1 and su2 mutations was already known. Apart from these mutations probably involved in the control of translational fidelity, six mutations conferring cross-resistance to paromomycin and neomycin were isolated. While four of them are localized in the Pm1 and Pm2 loci previously identified, the two others define a new gene which controls paromomycin and neomycin resistance, Pm3. Strains carrying the Pm3–1 allele are sensitive to temperature at the level of growth and sporulation. The three last mutations which were obtained confer no mutant phenotype when separated from the su1 background. They are closely linked to the su2 locus.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1982

References

REFERENCES

Coddington, A. & Fluri, R. (1977). Characterization of ribosomal proteins from Schizosacch-aromyces pombe by 2 dimensional polyacrylamide gel electrophoresis. Demonstration that a cycloheximide resistant strain cyh 1 has an altered 60S ribosomal protein. Molecular and General Genetics 158, 93100.CrossRefGoogle Scholar
Coppin-Raynal, E. (1977). Ribosomal suppressors and antisuppressors in Podospora anserina: resistance to cycloheximide. Journal of Bacteriology 131, 876883.CrossRefGoogle ScholarPubMed
Coppin-Raynal, E. (1981). Ribosomal suppressors and antisuppressors in Podospora anserina: altered susceptibility to paromomycin and relationships between genetic and phenotypic suppression. Biochemical Genetics 19, 729740.CrossRefGoogle ScholarPubMed
Coppin-Raynal, E. (1982). Ribosomal control of translational fidelity in Podospora anserina: a suppressor and an antisuppressor affecting the paromomycin induced misreading in vitro. Current Genetics (in the Press).CrossRefGoogle Scholar
Dequard, M. (1980). Thèse de 3ème Cycle, Université de Paris-Sud, Centre d'Orsay, France. Recherche de mutants ribosomiques chez le champignon Podospora anserina: analyse de mutants résistants et hypersensibles à la paromomycine.Google Scholar
Dequard, M., Couderc, J-L., Legrain, P., Belcour, L. & Picard-Bennoun, M. (1980). Search for ribosomal mutants in Podospora anserina: genetic analysis of mutants resistant to paromomycin. Biochemical Genetics 18, 263280.CrossRefGoogle ScholarPubMed
Esser, K. (1974). Podospora anserina. In Handbook of Genetics, vol. 1 (ed. King, R. C.), pp. 531551. New York and London: Plenum.Google Scholar
Gorini, L. (1974). Streptomycin and misreading of the genetic code. In Ribosomes (ed. Nomura, M., Tissières, A. and Lengyel, P.), pp. 791803. New York: Cold-Spring Harbor Laboratory.Google Scholar
Kurland, C. G. (1979). On the accuracy of elongation. In Ribosomes, Structure, Function and Genetics (ed. Chambliss, G., Craven, G. R., Davies, J., Davis, K., Kahan, L. and Nomura, M.), pp. 597614. Baltimore: University Park Press.Google Scholar
Liebman, S. W. & Cavenagh, M. (1980). An antisuppressor that acts on omnipotent suppressors in yeast. Genetics 95, 4961.CrossRefGoogle ScholarPubMed
Marcou, D., Picard-Bennoun, M. & Simonet, J. M. (1980). Podospora anserina. In Genetic Maps (ed. O'Brien, S. J.) 1, 151159.Google Scholar
Palmer, E., Wilhelm, J. & Sherman, F. (1979). Phenotypic suppression of nonsense mutants in yeast by aminoglycoside antibiotics. Nature, London 277, 148150.CrossRefGoogle ScholarPubMed
Pestka, S. A. (1977). Inhibitors of protein synthesis. In Molecular Mechanisms of Protein Biosynthesis (ed. Weissbach, H. and Pestka, S.), pp. 468536. New York: Academic Press.Google Scholar
Picard, M. (1971). Genetic evidence for a polycistronic unit of transcription in the complex locus ‘14’ in Podospora anserina. I. Genetic and complementation maps. Molecular and General Genetics 111, 3550.CrossRefGoogle ScholarPubMed
Picard, M. (1973). Genetic evidence for a polycistronic unit of transcription in the complex locus ‘14’ in Podospora anserina. II Genetic analysis of informational suppressors. Genetical Research 21, 115.CrossRefGoogle Scholar
Picard-Bennoun, M. (1976). Genetic evidence for ribosomal antisuppressors in Podospora anserina. Molecular and General Genetics 147, 299306.CrossRefGoogle ScholarPubMed
Picard-Bennoun, M. (1981). Mutations affecting translational fidelity in the eukaryote Podospora anserina: characterization of two ribosomal restrictive mutations. Molecular and General Genetics 183, 175180.CrossRefGoogle ScholarPubMed
Picard-Bennoun, M. & Coppin-Raynal, E. (1977). Une fonction ribosomique essentielle: le contrôle de la fidélité de la traduction. Physiologie Végétale. 15, 481489.Google Scholar
Picard-Bennoun, M. & Le Coze, D. (1980). Search for ribosomal mutants in Podospora anserina: genetic analysis of cold-sensitive mutants. Genetical Research 36, 289297.CrossRefGoogle ScholarPubMed
Piepersberg, W., Geyl, D., Hummel, H. & Bock, A. (1980). Physiology of ribosomal mutants. Physiology and biochemistry of bacterial ribosomal mutants. In Genetics and Evolution of Transcriptional and translational apparatus, pp. 359377. Tokio: Kodansha Scientific.Google Scholar
Rizet, G. & Engelmann, C. (1949). Contribution à a l'étude génétique d'un ascomycète tétra-sporé: Podospora anserina. Revue de Cytologie et de Biologie Végétale 11, 201304.Google Scholar
Rosset, R. & Gorini, L. (1969). A ribosomal ambiguity mutant. Journal of Molecular Biology 39, 95112.CrossRefGoogle Scholar
Simonet, J. M. & Zickler, D. (1978). Genes involved in caryogamy and meiosis in Podospora anserina. Molecular and General Genetics 162, 237242.CrossRefGoogle Scholar
Singh, A., Ursic, D. & Davies, J. (1979). Phenotypic suppression and misreading in Saccharomyces cerevisiae. Nature London 277, 146148.CrossRefGoogle Scholar
Strigini, P. & Gorini, L. (1970). Ribosomal mutations affecting efficiency of amber suppression. Journal of Molecular Biology 47, 517530.CrossRefGoogle ScholarPubMed
Thuriaux, P., Minet, M., Hofer, F. & Leupold, V. (1975). Genetic analysis of antisuppressor mutants in the fission yeast Schizosaccharomyces pombe. Molecular and General Genetics 142, 251261.CrossRefGoogle Scholar