Hostname: page-component-848d4c4894-r5zm4 Total loading time: 0 Render date: 2024-07-05T19:10:11.358Z Has data issue: false hasContentIssue false

Mutants affecting histidine utilization in Aspergillus nidulans

Published online by Cambridge University Press:  14 April 2009

Meryl Polkinghorne
Affiliation:
Department of Genetics, La Trobe University, Bundoora, Victoria 3083, Australia
M. J. Hynes
Affiliation:
Department of Genetics, La Trobe University, Bundoora, Victoria 3083, Australia

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Wild-type strains of Aspergillus nidulans grow poorly on L-histidine as a sole nitrogen source. The synthesis of the enzyme histidase (EC. 4.3.1.3) appears to be a limiting factor in the growth of the wild type, as strains carrying the mutant areA102 allele have elevated histidase levels and grow strongly on histidine as a sole nitrogen source. L-Histidine is an extremely weak sole carbon source for all strains.

Ammonium repression has an important role in the regulation of histidase synthesis and the relief of ammonium repression is dependent on the availability of a good carbon source. The level of histidase synthesis does not respond to the addition of exogenous substrate.

Mutants carrying lesions in the sarA or sarB loci (suppressor of areA102) have been isolated. The growth properties of these mutants on histidine as a sole nitrogen source correlate with the levels of histidase synthesized. Mutation at the sarA and sarB loci also reduces the utilization of a number of other nitrogen sources. The data suggest that these two genes may code for regulatory products involved in nitrogen catabolism. No histidase structural gene mutants were identified and possible explanations of this are discussed.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1975

References

REFERENCES

Arst, H. N. & Cove, D. J. (1973). Nitrogen metabolite repression in Aspergillus nidulans. Molecular and General Genetics 126, 111141.CrossRefGoogle ScholarPubMed
Arst, H. N. & Macdonald, D. W. (1973). A mutant of Aspergillus nidulans lacking NADP-linked glutamate dehydrogenase. Molecular and General Genetics 122, 261265.CrossRefGoogle ScholarPubMed
Chasin, L. A. & Magasanik, B. (1968). Induction and repression of histidine degrading enzymes in Bacillus subtilus. Journal of Biological Chemistry 243, 51655178.CrossRefGoogle Scholar
Clutterbuck, A. J. (1973). Gene symbols in Aspergillus nidulans. Genetical Research 21, 291296.CrossRefGoogle ScholarPubMed
Cohen, B. L. (1972). Ammonium repression of extracellular protease in Aspergillus nidulans. Journal of General Microbiology 71, 293299.CrossRefGoogle Scholar
Cohen, B. L. (1973). Regulation of intracellular and extracellular neutral and alkaline proteases in Aspergillus nidulans. Journal of General Microbiology 79, 311320.CrossRefGoogle ScholarPubMed
Cove, D. J. (1966). The induction and repression of nitrate reductase in the fungus Aspergillus nidulans. Biochimica et biophysica acta 113, 5156.CrossRefGoogle ScholarPubMed
Cove, D. J. (1969). Evidence for a near limiting intracellular concentration of a regulator substance. Nature, London 224, 272.CrossRefGoogle ScholarPubMed
Dubois, E., Grenson, M. & Wiame, J. M. (1973). Release of the [ammonia effect] on three catabolic enzymes by NADP-specific glutamate dehydrogenaseless mutations in Saccharomyces cerevisiae. Biochemical and Biophysical Research Communications 50, 967972.CrossRefGoogle ScholarPubMed
Emes, A. V. & Hassall, H. (1973). The degradation of L-histidine in the rat. The formation of imidazolylpyruvate, imidazolyl-lactate and imidazolylpropionate. Biochemical Journal 136, 649658.CrossRefGoogle ScholarPubMed
Holloman, W. K. & Dekker, C. A. (1971). Control by cesium and intermediates of the citric acid cycle of extracellular ribonuclease and other enzymes involved in nitrogen assimilation. Proceedings of the National Academy of Sciences of the United States of America 68, 22412245.CrossRefGoogle Scholar
Hynes, M. J. (1970). Induction and repression of amidase enzymes in Aspergillus nidulans. Journal of Bacteriology 102, 482487.CrossRefGoogle Scholar
Hynes, M. J. (1972). Mutants with altered glucose repression of amidase enzymes in Aspergillus nidulans. Journal of Bacteriology 111, 717722.CrossRefGoogle ScholarPubMed
Hynes, M. J. (1973 a). Pleiotropic mutants affecting the control of nitrogen metabolism in Aspergillus nidulans. Molecular and General Genetics 125, 99107.CrossRefGoogle ScholarPubMed
Hynes, M. J. (1973 b). The effect of lack of a carbon source on nitrate reductase activity in Aspergillus nidulans. Journal of General Microbiology 79, 155157.CrossRefGoogle ScholarPubMed
Hynes, M. J. (1974). Effects of ammonium, L-glutamate and L-glutamine on nitrogen catabolism in Aspergillus nidulans. Journal of Bacteriology 120, 11161123.CrossRefGoogle ScholarPubMed
Hynes, M. J. & Pateman, J. A. J. (1970). The genetic analysis of regulation of amidase synthesis in Aspergillus nidulans, I. Mutants able to utilize acrylamide. Molecular and General Genetics 108, 97106.CrossRefGoogle ScholarPubMed
Kacser, H., Bulfield, G. & Wallace, M. E. (1973). Histidinaemic mutant in the mouse. Nature, London 244, 7779.CrossRefGoogle ScholarPubMed
Lessie, T. G. & Neidhart, F. C. (1967). Formation and operation of the histidine degrading pathway in Pseudomonas aeruginosa. Journal of Bacteriology 93, 18001810.CrossRefGoogle ScholarPubMed
Lowry, O. H., Rosebrough, M. J., Farr, A. L. & Randall, R. J. (1951). Protein measurement with the folin phenol reagent. Journal of Biological Chemistry 193, 265275.CrossRefGoogle ScholarPubMed
Mackintosh, M. E. & Pritchard, R. H. (1963). The production and replica plating of microcolonies of Aspergillus nidulans. Genetical Research 4, 320322.CrossRefGoogle Scholar
Magasanik, B., Lund, P., Neidhart, F. C. & Schwartz, D. T. (1965). Induction and repression of the histidine degrading enzymes of Aerobacter aerogenes. Journal of Biological Chemistry 240, 43204324.CrossRefGoogle ScholarPubMed
Mehler, A. H. & Tabor, H. (1953). Deamination of histidine to form urocanic acid in liver. Journal of Biochemical Chemistry 201, 775784.Google ScholarPubMed
Morris, M. L., Lee, S. & Harper, A. E. (1972). Influence of differential induction of histidine catabolic enzymes on histidine degradation in vivo. Journal of Biological Chemistry 247, 57935802.CrossRefGoogle ScholarPubMed
McCully, K. S. & Forbes, E. (1965). Use of p-fluorophenylalanine with master strains of Aspergillus nidulans. Genetical Research 6, 352359.CrossRefGoogle ScholarPubMed
Pateman, J. A. & Cove, D. J. (1967). The regulation of nitrate reductase in Aspergillus nidulans. Nature, London 215, 12341237.CrossRefGoogle Scholar
Pontecorvo, G., Roper, J. A., Hemmons, L. M., MacDonald, K. D. & Bufton, A. W. J. (1953). The genetics of Aspergillus nidulans. Advances in Genetics 5, 141238.CrossRefGoogle ScholarPubMed
Prival, M. J. & Magasanik, B. (1971). Resistance to catabolite repression of histidase and proline oxidase during nitrogen limited growth of Klebsiella aerogenes. Journal of Biological Chemistry 246, 62886296.CrossRefGoogle ScholarPubMed
Prival, M. J., Brenchley, J. E. & Magasanik, B. (1973). Glutamine synthetase and the regulation of histidase formation in Klebsiella aerogenes. Journal of Biological Chemistry 248, 43344344.CrossRefGoogle ScholarPubMed
Roper, J. A. (1952). Production of heterozygous diploids in filamentous fungi. Experientia (Basel) 8, 1415.CrossRefGoogle ScholarPubMed
Scazzocchio, C. & Darlington, A. J. (1968). The induction and repression of the enzymes of purine breakdown in Aspergillus nidulans. Biochimica et biophysica acta 166, 557568.CrossRefGoogle ScholarPubMed
Smith, G. R., Halpern, Y. S. & Magasanik, B. (1971). Genetic and metabolic control of enzymes responsible for histidine degradation in Salmonella typhimurium. Journal of Biological Chemistry 246, 33203329.CrossRefGoogle ScholarPubMed
Tabor, H. & Mehler, A. H. (1955). Histidase and urocanase. Methods in Enzymology 2, 288.Google Scholar
Ten Berge, A. M. A., Zoutwelle, G. & Van Der Poll, K. W. (1973). Regulation of maltose fermentation in Saccharomyces carlsbergensis. I. The function of the gene MAL6 as recognized by ma16 mutants. Molecular and General Genetics 123, 233246.CrossRefGoogle Scholar
Tyler, B., Deleo, A. B. & Magasanik, B. (1974). Activation of transcription of hut DNA by glutamine synthetase. Proceedings of the National Academy of Sciences of the United States of America 71, 225229.CrossRefGoogle ScholarPubMed