Hostname: page-component-848d4c4894-nmvwc Total loading time: 0 Render date: 2024-06-19T19:50:01.932Z Has data issue: false hasContentIssue false

The Mus musculus musculus type Y chromosome predominates in Asian house mice

Published online by Cambridge University Press:  14 April 2009

Yutaka Nishioka
Affiliation:
Department of Biology, McGill University, Montreal, Quebec, Canada H3A 1B1
Estelle Lamothe
Affiliation:
Department of Biology, McGill University, Montreal, Quebec, Canada H3A 1B1

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Using a mouse Y chromosomal repetitive sequence that differentiates between the Mus musculus musculus type Y chromosome and the M. m. domesticus type Y chromosome, we studied the Y chromosome in M. m. molossinus, M. m. castaneus and M. m. subspecies specimens recently trapped in Japan, Taiwan and China as well as Asian mice maintained at the Jackson Laboratory and Litton Bionetics. Here we report that the M. m. musculus type Y chromosome predominates in Asian house mice and that Japanese mice maintained at some laboratories may not represent typical M. m. molossinus.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1987

References

Bishop, E. C., Boursot, P., Baron, B., Bonhomme, F. & Hatat, D. (1985). Most classical Mus musculus domesticus laboratory mouse strains carry a Mus musculus musculus Y chromosome. Nature 315, 7072.CrossRefGoogle ScholarPubMed
Bonhomme, F., Catalan, J., Britton-Davidian, J., Chapman, V. M., Moriwaki, K., Nevo, E. & Thaler, L. (1984). Biochemical diversity and evolution in the genus Mus. Biochemical Genetics 22, 275303.CrossRefGoogle ScholarPubMed
Denhardt, D. T. (1966). A membrane-filter technique for the detection of complementary DNA. Biochemical and Biophysical Research Communications 23, 641646.CrossRefGoogle ScholarPubMed
Eicher, E. M., Phillips, S. J. & Washburn, L. L. (1983). The use of molecular probes and chromosomal rearrangements to partition the mouse Y chromosome into functional regions. In Recombinant DNA and Medical Genetics (ed. Messer, A. and Porter, I. H.), pp. 5771. New York: Academic Press.Google Scholar
Ferris, S. D., Sage, R. D., Prager, E. M., Ritte, U. & Wilson, A. C. (1983). Mitochondrial DNA evolution in mice. Genetics 105, 681721.CrossRefGoogle ScholarPubMed
Ferris, S. D., Sage, R. D. & Wilson, A. C. (1982). Evidence from mtDNA sequences that common laboratory strains of inbred mice are descended from a single female. Nature 295, 163165.CrossRefGoogle ScholarPubMed
Festing, M. F. W. & Lovell, D. P. (1981). Domestication and development of the mouse as a laboratory animal. Symposia of the Zoological Society of London 47, 4362.Google Scholar
Keeler, C. D. (1931). The Laboratory Mouse: Its Origin, Heredity and Culture. Cambridge, Mass: Harvard University Press.CrossRefGoogle Scholar
Lamar, E. E. & Palmer, E. (1984). Y-encoded, species-specific DNA in mice: evidence that the Y chromosome exists in two polymorphic forms in inbred strains Cell 37, 171177.CrossRefGoogle Scholar
Moriwaki, K., Miyashita, N. & Yonekawa, H. (1985). Genetic survey of the origin of the laboratory mice and its implication in genetic monitoring. In The Contribution of Laboratory Animal Science to the Welfare of Man and Animals (ed. Archibold, J., Ditchfield, J. and Rowsell, H. C.), pp. 237247. Stuttgart: Fischer.Google Scholar
Moriwaki, K., Shiroishi, T., Yonekawa, H., Miyashita, N. & Sugai, T. (1982). Genetic status of Japanese wild mice and immunological characters of their H-2 antigens. In Teratocarcinoma and Embryonic Cell Interactions (ed. Muramatsu, T., Gachelin, G., Moscona, A. A. and Ikawa, Y.), pp. 157175. Tokyo: Japan Scientific Societies Press and Academic Press.Google Scholar
Moriwaki, K., Yonekawa, H., Gotoh, O., Minezawa, M., Winking, H. & Gropp, A. (1984). Implications of the genetic divergence between European wild mice with Robertsonian translocations from the viewpoint of mitochondrial DNA. Genetical Research 43, 277287.CrossRefGoogle ScholarPubMed
Morse, H. C. III (1978). Origins of Inbred Mice. New York: Academic Press.Google Scholar
Nallaseth, F. S. & Dewey, M. J. (1986). Moderately repeated mouse Y chromosomal sequence families present distinct types of organization and evolutionary change. Nucleic Acid Research 14, 52955307.CrossRefGoogle ScholarPubMed
Nallaseth, F. S., Lawther, R. P., Staffcup, M. R. & Dewey, M. J. (1983). Isolation of recombinant bacteriophage containing male specific mouse DNA. Molecular and General Genetics 190, 8084.CrossRefGoogle ScholarPubMed
Nishioka, Y. (1987). Y-chromosomal DNA polymorphism in mouse inbred strains. Genetical Research 50, 6972.CrossRefGoogle ScholarPubMed
Nishioka, Y. & Lamothe, E. (1986). Isolation and characterization of a mouse Y chromosomal repetitive sequence. Genetics 113, 417–432.CrossRefGoogle ScholarPubMed
Nishioka, Y. & Lamothe, E. (1987). Evolution of a mouse Y chromosomal sequence flanked by highly repetitive elements. Genome 29, 380383.CrossRefGoogle ScholarPubMed
Potter, M. (1978). Comments on the relationship of inbred strains to the genus Mus. In Origins of Inbred Mice (ed. Morse, H. C. III.), pp. 497509. New York: Academic Press.CrossRefGoogle Scholar
Sage, R. D. (1981). Wild mice. In The Mouse in Biomedical Research (ed. Berry, R. J.), vol. 1, pp. 3990. New York: Academic Press.Google Scholar
Southern, E. M. (1975). Detection of specific sequences among DNA fragments separated by gel electrophoresis. Journal of Molecular Biology 98, 503517.CrossRefGoogle ScholarPubMed
Staats, J. (1980). Standardized nomenclature for inbred strains of mice; seventh listing. Cancer Research 40, 20832128.Google ScholarPubMed
Thaler, L., Bonhomme, F. & Britton-Davidian, J. (1981). Processes of speciation and semispeciation in the house mouse. Symposia of the Zoological Society of London 47, 2741.Google Scholar
Yonekawa, H., Gotoh, O., Tagashira, Y., Shu, L. I., Cho, W. S., Miyashita, N. & Moriwaki, K. (1986). A hybrid origin of Japanese mice ‘Mus musculus molossinus. Current Topics in Microbiology and Immunology 127, 6267.Google ScholarPubMed
Yonekawa, H., Moriwaki, K., Gotoh, O., Miyashita, N., Migita, S., Bonhomme, F., Hjorth, J. P., Petras, M. L. & Tagashira, Y. (1982). Origins of laboratory mice deduced from restriction patterns of mitochondrial DNA. Differentiation 22, 222226.CrossRefGoogle ScholarPubMed
Yonekawa, H., Moriwaki, K., Gotoh, O., Watanabe, J., Hayashi, J.-L., Miyashita, N., Petras, M. L. & Tagashira, Y. (1980). Relationship between laboratory mice and the subspecies Mus musculus domesticus based on restriction endonuclease cleavage patterns of mitochondrial DNA. Japanese Journal of Genetics 55, 289296.Google Scholar