Hostname: page-component-848d4c4894-jbqgn Total loading time: 0 Render date: 2024-06-26T06:01:10.191Z Has data issue: false hasContentIssue false

The multiple electrophoretic bands of mouse haemoglobins

Published online by Cambridge University Press:  14 April 2009

J. R. Morton
Affiliation:
School of Agriculture, University of Cambridge

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A survey of past work shows that certainty in the electrophoretic classification of mouse haemoglobins requires further understanding of the meaning of the multiple electrophoretic bands observed.

Six electrophoretic bands are observed in all. Numbered in order of mobility they give the formulae 2 for Hb-s, 1235 for Hb-d, 1246 for Hb-p and 12345 for foetal haemoglobin (Hb-f). When mercaptoethanol is added to the electrophoretic medium these formulae become: 2 for Hb-s, 23 for Hb-d, 24 for Hb-p, 234 for Hb-f. Bands 5 and 6 and a fast ultra-centrifuge fraction both increase when samples are stored.

Bands 5 of Hb-d, 6 of Hb-p, and probably 5 of Hb-f, are dimers of the whole haemoglobin molecule almost certainly joined by sulphur bridges. The monomers are bands 2 and 3 of Hb-d and 2 and 4 of Hb-p. Within each type interconversion of bands 2 and 3 and bands 2 and 4 has been observed.

The hypothesis is suggested that Hb-d and Hb-p both exist as two conformational isomers. In each case one isomer is electrophoretically indistinguishable from Hb-s: the other permits the electrophoretic recognition of their differences in bands 3 and 4, and the formation of sulphur bridges to give bands 5 and 6.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1966

References

REFERENCES

Atassi, M. Z. (1964 a). Properties of components of myoglobin of the Sperm Whale. Nature, Lond. 202, 496498.CrossRefGoogle ScholarPubMed
Atassi, M. Z. (1964 b). Chemical studies on haemoglobins A1 and A0. Biochem. J. 93, 189197.CrossRefGoogle ScholarPubMed
Barrowman, J. & Craig, M. (1961). Haemoglobins of foetal C57BL/6 mice. Nature, Lond. 190, 818819.CrossRefGoogle ScholarPubMed
Barrowman, J. & Roberts, K. B. (1961). Foetal haemoglobs of CBA mice. Nature, Lond. 189, 409410.CrossRefGoogle ScholarPubMed
Benesch, R. & Benesch, R. E. (1964). Properties of haemoglobin H and their significance to function of haemoglobin. Nature, Lond. 202, 773775.CrossRefGoogle ScholarPubMed
Benesch, R., Benesch, R. E., Ranney, H. M. & Jacobs, A. S. (1962). Isomeric forms of haemoglobin H. Nature, Lond. 194, 840842.CrossRefGoogle ScholarPubMed
Benesch, R. E. & Benesch, R. (1962). The influence of oxygenation on the reactivity of the —SH groups of haemoglobin. Biochemistry, 1, 735738.CrossRefGoogle Scholar
Butler, E. A., Flynn, F., Harris, H. & Robson, E. B. (1961). The laboratory diagnosis of macroglobulinaemia. Lancet, 2 (1961), 289293.CrossRefGoogle ScholarPubMed
Craig, M. L. & Russell, E. S. (1963). Electrophoretic patterns of hemoglobin from fetal mice of different inbred strains. Science, N. Y. 142, 398399.CrossRefGoogle ScholarPubMed
Deutsch, H. F. & Morton, J. I. (1957). Dissociation of human serum macroglobulins. Science, N.Y. 125, 600.CrossRefGoogle ScholarPubMed
Grouchy, J. De (1960). Protéines et enzymes tissulaires—une étude par électrophorèse en gel d'amidon. Revue fr. Étud. clin. biol. 5, 286290.Google Scholar
Holt, S. B. (1945). A polydactyl gene in mice capable of nearly regular manifestation. Ann. Eugen. 12, 220249.CrossRefGoogle Scholar
Hutton, J. J., Bishop, J., Schweet, R. & Russell, E. S. (1962 a). Hemoglobin inheritance in inbred mouse strains, I. Structural differences. Proc. natn. Acad. Sci. U.S.A. 48, 15051513.CrossRefGoogle ScholarPubMed
Hutton, J. J., Bishop, J., Schweet, R. & Russell, E. S. (1962 b). Hemoglobin inheritance in inbred mouse strains, II. Genetic studies. Proc. natn. Acad. Sci. U.S.A. 48, 17181724.CrossRefGoogle ScholarPubMed
Lingrel, J. B. & Borsook, H. (1962). Haemoglobin minors as possible intermediates in haemoglobin synthesis. Nature, Lond. 195, 355356.CrossRefGoogle ScholarPubMed
Moretti, J., Boussier, G. & Jayle, M.-F. (1957). Réalisation technique et premières applications de l'électrophorése sur gel d'amidon. Bull. Soc. Chim. biol. 39, 593605.Google Scholar
Morton, J. R. (1962). Starch gel electrophoresis of mouse haemoglobins. Nature, Lond. 194, 383384.CrossRefGoogle ScholarPubMed
Popp, R. A. (1962). Studies on the mouse hemoglobin loci. V. Differences among tryptic peptides of the β-chain governed by alleles at the Hb locus. J. Hered. 53, 142146.CrossRefGoogle Scholar
Poulik, M. D. (1957). Starch gel electrophoresis in a discontinuous system of buffers. Nature, Lond. 180, 14771479.CrossRefGoogle Scholar
Ranney, H. M. & Gluecksohn-Waelsch, S. (1955). Filter paper electrophoresis of mouse haemoglobin: a preliminary note. Ann. hum. Genet. 19, 269272.CrossRefGoogle Scholar
Ranney, H. M., Marlowe Smith, G. & Gluecksohn-Waelsch, S. (1960). Haemoglobin differences in inbred strains of mice. Nature, Lond. 188, 212214.CrossRefGoogle ScholarPubMed
Riggs, A. (1961). The binding of N-ethylmaleimide by human hemoglobin and its effect upon oxygen equilibrium. J. biol. Chem. 236, 19481954.CrossRefGoogle ScholarPubMed
Riggs, A. (1963). The amino-acid composition of some mammalian hemoglobins: Mouse, Guinea Pig, and Elephant. J. biol. Chem. 238, 29832987.CrossRefGoogle ScholarPubMed
Riggs, A., Sullivan, B. & Agee, J. R. (1964). Polymerisation of Frog and Turtle hemoglobins. Proc. natn. Acad. Sci. U.S.A. 51, 11271134.CrossRefGoogle ScholarPubMed
Riggs, A. (1965). Haemoglobin polymerisation in mice. Science, N.Y. 147, 621623.CrossRefGoogle ScholarPubMed
Rosa, J. & Labie, D. (1962). Change in A3 haemoglobin due to β chain. Nature, Lond. 196, 901.CrossRefGoogle ScholarPubMed
Rosa, J., Shapira, G., Dreyfus, J. C., Grouchy, J. De, Mathé, G. & Bernard, J. (1958). Different heterogeneities of mouse haemoglobin according to strains. Nature, Lond. 182, 947948.CrossRefGoogle ScholarPubMed
Russell, E. S. & Gerald, P. S. (1958). Inherited electrophoretic patterns among 20 inbred strains of mice. Science, N.Y. 128, 15691570.CrossRefGoogle ScholarPubMed