Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-05-05T09:58:14.526Z Has data issue: false hasContentIssue false

Molecular characterization of a radiation-induced reverse mutation at the dilute locus in the mouse

Published online by Cambridge University Press:  14 April 2009

Jack Favor
Affiliation:
Institut für Säugetiergenetik, Gesellschaft für Strahlen- und Umweltforschung, D-8042 Neuherberg, FRG
P. Günter Strauss
Affiliation:
Abteilung für Molekulare Zellpalhologie, Gesellschaft für Strahlen- und Umweltforschung, D-8042 Neuherberg, FRG
Volker Erfle
Affiliation:
Abteilung für Molekulare Zellpalhologie, Gesellschaft für Strahlen- und Umweltforschung, D-8042 Neuherberg, FRG
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Irradiation has been employed successfully to increase the reverse mutation rate at the agouti and dilute loci in the mouse. The dilute allele has previously been shown to be due to the insertion of an ecotropic-specific murine leukaemia virus in the vicinity of the dilute locus, and its instability to be due to the excision of the proviral sequence (Jenkins et al. 1981). Molecular analysis of the recovered radiation-induced revertant at the dilute locus indicated excision of all but approximately 500 bp of the proviral sequence. The proviral sequence remaining in the mouse genome hybridizes to a probe specific for the proviral long terminal repeat (LTR) sequence. Previous characterization of two spontaneous reverse dilute mutations indicated precise proviral excision of all but a single LTR, and suggests homologous recombination between the proviral LTR sequences as the mechanism of proviral excision (Hutchison, Copeland & Jenkins 1984). The present results indicate that radiation and increases the reverse mutation rate at the dilute locus acts by a similar mechanism, and suggest that mutagenic treatment may be employed to produce genetic variants of interest.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1987

References

Chattopadhyay, S. K., Lander, M. R., Rands, E. & Lowy, D. R. (1980). Structure of endogenous murine leukemia virus DNA in mouse genomes. Proceedings of the National Academy Science (USA) 77, 57745778.CrossRefGoogle ScholarPubMed
Copeland, N. G., Hutchison, K. W. & Jenkins, N. A. (1983). Excision of the DBA ecotropic provirus in dilute coat-color revertants of mice occurs by homologous recombination involving the viral LTRs. Cell 33, 379387.CrossRefGoogle ScholarPubMed
Eeken, J. C. J. (1982). The stability of mutator (MR)-induced X-chromosomal recessive visible mutations in Drosophila melanogaster, Mutation Research 96, 213224.CrossRefGoogle ScholarPubMed
Eeken, J. C. J. & Sobels, F. H. (1986). The effect of X-irradiation and formaldehyde treatment of spermatogonia on the reversion of an unstable, P-element insertion mutation in Drosophila melanogaster. Mutation Research 175, 6165.Google Scholar
Etzerodt, M., Mikkelsen, T., Pedersen, F. S., Kjeldgaard, N. O. & Jorgensen, P. (1984). The nucleotide sequence of the Akv murine leukemia virus genome. Virology 134, 196207.CrossRefGoogle ScholarPubMed
Favor, J., Neuhäuser-Klaus, A. & Ehling, U. H. (1987). Radiation-induced forward and reverse specific locus mutations and dominant cataract mutations in treated strain BALB/c and DBA/2 male mice. Mutation Research 177, 161169.CrossRefGoogle ScholarPubMed
Fisher, R. A. (1954). Statistical Methods for Research Workers. Edinburgh: Oliver & Boyd.Google Scholar
Green, M. M. (1961). Back mutation in Drosophila melanogaster. I. X-ray-induced back mutations at the yellow, scute and white loci. Genetics 46, 671682.CrossRefGoogle ScholarPubMed
Green, M. M. (1967). The genetics of a mutable gene at the white locus of Drosophila melanogaster. Genetics 56, 467482.CrossRefGoogle ScholarPubMed
Hutchison, K. W., Copeland, N. G. & Jenkins, N. A. (1984). Dilute-coat-color locus of mice: nucleotide sequence analysis of the d+2J and d+Ha revertant alleles. Molecular and Cellular Biology 4, 28992904.Google ScholarPubMed
Jenkins, N. A., Copeland, N. G., Taylor, B. A. & Lee, B. K. (1981). Dilute (d) coat colour mutation of DBA/2J mice is associated with the site of integration of an ecotropic MuLV genome. Nature 293, 370374.CrossRefGoogle ScholarPubMed
Jenkins, N. A., Copeland, N. G., Taylor, B. A. & Lee, B. K. (1982). Organization, distribution, and stability of endogenous ecotropic murine leukemia virus DNA sequences in chromosomes of Mus musculus. Journal of Virology 43, 2636.CrossRefGoogle ScholarPubMed
Modollel, J., Bender, W. & Meselson, M. (1983). Drosophila melanogaster mutations suppressible by the suppressor of Hairy-wing are insertions of a 7·3-kilobase mobile element, Proceedings of the National Academy of Science (USA) 80, 16781682.CrossRefGoogle Scholar
Rasmuson, B., Westerberg, B. M., Rasmuson, A., Gvozdev, V. A., Belyaeva, E. S. & Ilyin, Y. V. (1981). Transpositions, mutable genes, and the dispersed gene family Dm225 in Drosophila melanogaster. Cold Spring Harbor Symposia on Quantitative Biology 45, 545551.CrossRefGoogle ScholarPubMed
Roeder, G. S. & Fink, G. R. (1980). DNA rearrangements associated with a transposable element in yeast. Cell 21, 239249.CrossRefGoogle ScholarPubMed
Russell, W. M. (1951). X-ray-induced mutations in mice. Cold Spring Harbor Symposia on Quantitative Biology 16, 327336.CrossRefGoogle ScholarPubMed
Schlager, G. & Dickie, M. M. (1971). Natural mutation rates in the house mouse. Estimates for five specific loci and dominant mutations. Mutation Research 11, 8996.CrossRefGoogle ScholarPubMed
Southern, E. M. (1975). Detection of specific sequences among DNA fragments separated by gel electrophoresis. Journal of Molecular Biology 98, 503517.CrossRefGoogle ScholarPubMed
Van Beveren, C., van Straaten, F., Galleshaw, J. A. & Verma, I. M. (1981). Nucleotide sequence of the genome of a murine sarcoma virus. Cell 27, 97108.CrossRefGoogle ScholarPubMed