Hostname: page-component-84b7d79bbc-tsvsl Total loading time: 0 Render date: 2024-07-25T16:24:47.784Z Has data issue: false hasContentIssue false

Modification of the suppressor phenotype of thymine requiring strains of Escherichia coli

Published online by Cambridge University Press:  14 April 2009

Muriel B. Herrington*
Affiliation:
Biology Department, Concordia University, 1455 de Maisonneuve Blvd. W., Montreal, Quebec, Canada H3G 1M8
Johnny Basso
Affiliation:
Biology Department, Concordia University, 1455 de Maisonneuve Blvd. W., Montreal, Quebec, Canada H3G 1M8
Maria Faraci
Affiliation:
Department of Microbiology and Immunology, McGill University, 3775 University, Montreal, Quebec, Canada, H3A 2B4
Chantal Autexier
Affiliation:
Woman's College Hospital, 76 Glenville St, Toronto, Ontario, Canada, M5S 1B2
*
*Corresponding author.

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Thymine requiring strains of Escherichia coli suppress nonsense and frameshift mutations during translation. Strains with different genetic backgrounds exhibited different nonsense suppression spectra and showed differences in the apparent suppression efficiency. Part of this strain difference is due to a presumably novel gene (tsmA) mapping near 39 min. This gene affects the spectrum and apparent efficiency of suppression, and appears to affect the utilization of thymidine.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1991

References

Bachmann, B. J. (1990). Linkage map of Escherichia coli K-12, Edition 8. Microbiological Reviews 54, 130197.CrossRefGoogle ScholarPubMed
Bachmann, B. J. (1987). Derivations and genotypes of some mutant derivatives of Escherichia coli K-12. In Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology (ed. Neidhardt, F. C.), pp. 11901219. Washington, D.C.: American Society for Microbiology.Google Scholar
Barclay, B. J.Kunz, B. A.Little, J. G. & Haynes, R. H. (1982). Genetic and biochemical consequences of thymidylate stress. Canadian Journal of Biochemistry 60, 172199.CrossRefGoogle ScholarPubMed
Beyersmann, D.Messer, W. & Schicht, M. (1974). Mutants of Escherichia coli B/r defective in deoxyribonucleic acid initiation: dnal, a new gene for replication. Journal of Bacteriology 118, 783789.Google Scholar
Bray, G. A. (1960). A simple efficient liquid scintillation fluid for counting aqueous solutions in liquid scintillation counter. Analytical Biochemistry 1, 279285.Google Scholar
Cabezón, T.Herzog, A.De Wilde, M.Villarroel, R. & Bollen, A. (1976). Cooperative control of translational fidelity by ribosomal proteins in Escherichia coli. Molecular and General Genetics 144, 5962.CrossRefGoogle ScholarPubMed
Cheung, P. K. & Herrington, M. B. (1982). Thymine inhibits suppression by an Escherichia coli nonsense and frameshift suppressor. Molecular and General Genetics 186, 217220.CrossRefGoogle ScholarPubMed
Gesteland, R. F. (1966). Isolation and characterization of ribonuclease I mutants of Escherichia coli. Journal of Molecular Biology 16, 6784.CrossRefGoogle ScholarPubMed
Goncharoff, P. & Nichols, B. P. (1984). Nucleotide sequence of Escherichia coli pabB indicates a common evolutionary origin of p-aminobenzoate synthetase and anthranilate synthetase. Journal of Bacteriology 159, 5762.CrossRefGoogle ScholarPubMed
Gorini, L. (1974). Streptomycin and misreading of the genetic code. In Ribosomes (ed. Nomura, M., Tissieres, A.Lengyel, P.), pp. 791803. Cold Spring Harbor, New York: Cold Spring Harbor Laboratory.Google Scholar
Hall, B. G. & Hartl, D. L. (1974). Regulation of newly evolved enzymes. I. Selection of novel lactase regulated by lactose in Escherichia coli. Genetics 76, 392400.CrossRefGoogle ScholarPubMed
Herrington, M. B. (1989). Broad spectrum suppressors. Molecular Genetics (Life Sciences Advances) 8, 7184.Google Scholar
Herrington, M. B.Kohli, A. & Lapchak, P. H. (1984). Suppression by thymidine-requiring mutants of Escherichia coli K12. Journal of Bacteriology 157, 126129.CrossRefGoogle Scholar
Herrington, M. B.Kohli, A. & Faraci, M. (1986). Frameshift suppression by thy A mutants of Escherichia coli K12. Genetics 114, 705716.CrossRefGoogle Scholar
Kohara, Y. (1990). Correlation between the physical and genetic maps of the Escherichia coli K-12 chromosome. In The Bacterial Chromosome (ed. Drlica, K. and Riley, M.), pp. 2942. Washington, D. C.: American Society for Microbiology.Google Scholar
Miller, J. H. (1972). Experiments in Molecular Genetics. Cold Spring Harbor, New York: Cold Spring Harbor.Google Scholar
Møllgaard, H. & Neuhard, J. (1983). Biosynthesis of deoxythymidine triphosphate. In Metabolism of Nucleotides, Nucleosides and Nucleobases in Microorganisms (ed. Munch-Petersen, A.), pp. 149201. London: Academic Press Inc. (London) Ltd.Google Scholar
Moore, M.Ahmed, F. & Dunlap, R. (1984). Isolation of the covalent binary complex of 5-fluorodeoxyuridylate and thymidylate synthetase by trichloroacetic acid precipitation. Biochemical and Biophysical Research Communications 124, 3743.Google Scholar
Munch-Petersen, A. & Mygind, B. (1983). Transport of nucleic acid precursors. In Metabolism of Nucleotides, Nucleosides and Nucleobases in Microorganisms (ed. Munch-Petersen, A.), pp. 259305. London: Academic Press Inc. (London) Ltd.Google Scholar
O'Donovan, G. A. & Neuhard, J. (1970). Pyrimidine metabolism in microorganisms. Bacteriological Reviews 34, 278343.CrossRefGoogle ScholarPubMed
Piepersberg, W.Bock, A. & Wittmann, H. G. (1975). Effect of different mutations in ribosomal protein S5 of Escherichia coli on translational fidelity. Molecular and General Genetics 140, 91100.CrossRefGoogle ScholarPubMed
Pocklington, M. J.Johnston, L.Jenkins, J. R. & Orr, E. (1990) The omnipotent suppressor SUP45 affects nucleic acid metabolism and mitochondrial structure. Yeast 6, 441450.CrossRefGoogle ScholarPubMed
Roodman, S. T. & Greenberg, G. R. (1971). A temperature sensitive thy A mutant blocked in the synthesis of thymidylate synthetase. Journal of Biological Chemistry 246, 26092617.CrossRefGoogle Scholar
Singer, M.Baker, T. A.Schnitzler, G.Deischel, S. M.Goel, M.Dove, W.Jaacks, K. J.Grossman, A. D.Erickson, J. W. & Gross, C. A. (1989). A collection of strains containing genetically linked alternating antibiotic resistance elements for genetic mapping of Escherichia coli. Microbiological Reviews 53, 124.Google Scholar
Song, J. M. & Liebman, S. W. (1989). Mutations in ADE3 reduce the efficiency of the omnipotent suppressor sup45–2. Current Genetics 16, 315321.CrossRefGoogle ScholarPubMed
Templin, A.Margossian, L. & Clark, A. J. (1978). Suppressibility of recA, recB and recC mutations by nonsense suppressors. Journal of Bacteriology 134, 590596.Google Scholar
Von Meyenburg, K. & Hansen, F. G. (1987). Regulation of chromosome replication. In Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology (ed. Neidhardt, F. C.), pp. 15551576. Washington, D. C.: American Society for Microbiology.Google Scholar
Wood, W. B. & Revel, H. R. (1976). The genome of bacteriophage T4. Bacteriological Reviews 40, 847868.CrossRefGoogle ScholarPubMed
Wu, T. T. (1966). A model for three point analysis of random general transduction. Genetics 54, 405410.CrossRefGoogle Scholar
Zhang, J. & Deutscher, M. P. (1988). Cloning, characterization, and effects of overexpression of the Escherichia coli rnd gene encoding RNase D. Journal of Bacteriology 170, 522527.Google Scholar