Hostname: page-component-848d4c4894-xm8r8 Total loading time: 0 Render date: 2024-06-26T02:19:06.807Z Has data issue: false hasContentIssue false

Mitotic non-conformity in Aspergillus nidulans: the production of hypodiploid and hypohaploid nuclei

Published online by Cambridge University Press:  14 April 2009

J. A. Roper
Affiliation:
Department of Genetics, University of Sheffield
B. H. Nga
Affiliation:
Department of Genetics, University of Sheffield

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Strains of Aspergillus nidulans with a chromosome segment additional to the normal complement are vegetatively unstable. Previous work suggested that the deletions occurring at mitosis were confined to the unbalanced segments. It has been shown now that deletions, while probably always involving a duplicate segment, may extend beyond it to produce hypohaploids and hypodiploids, respectively, from unbalanced haploid and unbalanced diploid parents.

Hypoploids have been proposed tentatively as an explanation for some cases of phenotypic variegation; on this basis it is possible to account for some of the diverse phenomena shown by, for example, position-effect variegation.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1969

References

REFERENCES

Azevedo, J. L. & Roper, J. A. (1967). Lethal mutations and balanced lethal systems in Aspergillus nidulans. J. gen. Microbiol. 49, 149155.CrossRefGoogle ScholarPubMed
Bainbridge, B. W. & Roper, J. A. (1966). Observations on the effects of a chromosome duplication in Aspergillus nidulans. J. gen. Microbiol. 42, 417424.Google Scholar
Baker, W. K. (1963). Genetic control of pigment differentiation in somatic cells. Am. Zoologist 3, 5769.CrossRefGoogle Scholar
Baker, W. K. (1967). A clonal system of differential gene activity in Drosophila. Devl Biol. 16, 117.CrossRefGoogle ScholarPubMed
Baker, W. K. (1968). Position-effect variegation. Adv. Genet. 14, 133169.CrossRefGoogle ScholarPubMed
Ball, C. (1967). Chromosome instability related to gene suppression in Aspergillus nidulans. Genet. Res. 10, 173183.Google Scholar
Beermann, S. (1966). A quantitative study of chromatin diminution in embryonic mitoses of Cyclops Jurcifer. Genetics 54, 567576.Google Scholar
Burns, J. A. & Gerstel, D. U. (1967). Flower colour variegation and instability of a block of heterochromatin in Nicotiana. Genetics 57, 155167.Google Scholar
Caspersson, T. & Schultz, J. (1938). Nucleic acid metabolism of the chromosomes in relation to gene reproduction. Nature, Land. 142, 294295.CrossRefGoogle Scholar
Cattanach, B. M. (1961). A chemically-induced variegated-type position effect in the mouse. Z. Vererb Lehre 92, 165182.Google ScholarPubMed
Demerec, M. & Slizynska, H. (1937). Mottled white 258–18 of Drosophila melanogaster. Genetics 22, 641649.CrossRefGoogle ScholarPubMed
Elliott, C. G. (1960). The cytology of Aspergillus nidulans. Genet. Res. 1, 462476.CrossRefGoogle Scholar
Forbes, E. (1959). Use of mitotic segregation for assigning genes to linkage groups in Aspergillus nidulans. Heredity 13, 6780.CrossRefGoogle Scholar
Gowen, J. W. & Gay, E. H. (1933 a). Effect of temperature on eversporting eye colour in Drosophila melanogaster. Science, N.Y. 72, 312.Google Scholar
Gowen, J. W. & Gay, E. H. (1933 b). Eversporting as a function of the Y-chromosome in Drosophila melanogaster. Proc. natn. Acad. Sci. U.S.A. 19, 122126.Google Scholar
Grüneberg, H. (1966). The molars of the tabby mouse, and a test of the ‘single-active X-chromosome’ hypothesis. J. Embryol. Morph. 15, 223244.Google Scholar
Lewis, E. B. (1950). The phenomenon of position effect. Adv. Genet. 3, 73115.CrossRefGoogle ScholarPubMed
Lima-De-Faria, A. & Jaworska, H. (1968). Late DNA synthesis in heterochromatin. Nature, Land. 217, 138142.CrossRefGoogle ScholarPubMed
Lyon, M. F. (1961). Gene action in the X-chromosome of the mouse. (Mus musculus). Nature, Land. 190, 372373.Google Scholar
McCuily, K. S. & Forbes, E. (1965). The use of p-fluorophenylalanine with ‘master’ strains of Aspergillus nidulans for assigning genes to linkage groups. Genet. Res. 6, 352359.CrossRefGoogle Scholar
Morpurgo, G. (1961). Somatic segregation induced by p-fluorophenylalanine. AspergillusNews Letter 2, 10.Google Scholar
Muller, H. J. (1930). Types of visible variations induced by X-rays in Drosophila. J. Genet. 22, 299334.Google Scholar
Nga, B. H. & Roper, J. A. (1968). Quantitative intrachromosomal changes arising at mitosis in Aspergillus nidulans. Genetics 58, 193209.Google Scholar
Nga, B. H. & Roper, J. A. (1969). A system generating spontaneous intrachromosomal changes at mitosis in Aspergillus nidulans. Genet. Res. (in the Press).Google Scholar
Pontecorvo, G., Roper, J. A., Hemmons, L. M., Macdonald, K. D. & Button, A. W. J.(1953). The genetics of Aspergillus nidulans. Adv. Genet. 5, 141238.Google Scholar
Priest, J. H. (1968). The replication of human heterochromatin in serial culture. Chromosoma 24, 438455.CrossRefGoogle ScholarPubMed
Pritchard, R. H. (1956). A genetic investigation of some adenine-requiring mutants of Aspergillus nidulans. Ph.D. thesis, Glasgow University.Google Scholar
Pritchard, R. H. (1960). The bearing of recombination analysis at high resolution on genetic fine structure in Aspergillus nidulans and the mechanism of recombination in higherorganisms. In Microbial Genetics. Symp. Soc. gen. Microbiol. 10, 155180.Google Scholar
Prokofieva-Belgovskaya, A. A. (1941). Cytological properties of inert regions and their bearing on the mechanisms of mosaicism and chromosome rearrangement. Drosoph. Inf. Serv. 15, 3536.Google Scholar
Roper, J. A. (1952). Production of heterozygous diploide in filamentous fungi. Experientia 8, 1415.Google Scholar
Russell, L. B. & Bangham, J. W. (1959). Variegated-type position effects in the mouse. Genetics 44, 532.Google Scholar
Schultz, J. (1936). Variegation in Drosophila and the inert chromosome regions. Proc. natn. Acad. Sci. U.S.A. 22, 2733.CrossRefGoogle ScholarPubMed
Schultz, J. (1965). Genes, differentiation, and animal development. Brookhaven Symp. Biol. 8, 116147.Google Scholar