Hostname: page-component-594f858ff7-7tp2g Total loading time: 0 Render date: 2023-06-05T21:32:01.509Z Has data issue: false Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": false, "coreDisableEcommerce": false, "corePageComponentUseShareaholicInsteadOfAddThis": true, "coreDisableSocialShare": false, "useRatesEcommerce": true } hasContentIssue false

A mathematical study on the distribution of the number of repeated genes per chromosome

Published online by Cambridge University Press:  14 April 2009

Naoyuki Takahata
National Institute of Genetics, Mishima, 411, Japan
Rights & Permissions[Opens in a new window]


HTML view is not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

I develop a mathematical model which can account for a distribution of the number of repeated genes per chromosome under the joint effects of sister chromatid exchange (SCE), inter-chromosomal crossing-over (ICC), and selection. The model can be applied not only to the cases of small gene clusters but also to multigene families. Based on this model, an appropriate mathematical formula is derived and used to obtain the equilibrium distribution. Assuming stabilizing selection and two simple schemes concerning SCE and ICC, I numerically calculate the equilibrium distribution and compare the result with observations on frequencies of single and triple α-haemoglobin genes in primates. It is also shown that if SCE and ICC occur according to the same probabilistic law, the distinction between them does not make much sense in the equilibrium distribution.

Short Paper
Copyright © Cambridge University Press 1981



Bridges, C. B. (1919). Duplication. Anatomical Record 15, 357358.Google Scholar
Crow, J. F. & Kimura, M. (1970). An Introduction to Population Genetics Theory. New York, London: Harper and Row.Google Scholar
Fritsch, E. F., Lawn, R. M. & Maniatis, T. (1980). Molecular cloning and characterization of the human β-like globin gene cluster. Cell 19, 959972.CrossRefGoogle ScholarPubMed
Goossens, M., Dozy, A. M., Embury, S. H., Zachariades, Z., Hadjiminas, M. G., Stamatoyannopoulos, G. & Kan, Y. W. (1980). Triplicated α-globin loci in humans. Proceedings of the National Academy of Science 77, 518521.CrossRefGoogle ScholarPubMed
Hardinson, R. C., IIIButler, E. T., Lacy, E. & Maniatis, T. (1979). The structure and transcription of four linked rabbit β-like globin genes. Cell 18, 12851297.CrossRefGoogle Scholar
Harris, H. (1980). Multilocus enzymes in man. CIBA foundation Symposium 66 (new series), 187204.Google Scholar
Jahn, C. L., IIIHutchinson, C. A., Phillips, S. J., Weaver, S., Haigwood, N. L., Volivia, C. F. & Edgell, M. H. (1980). DNA sequence organization of the β-globin complex in the BALB/c Mouse. Cell 21, 159168.CrossRefGoogle ScholarPubMed
Jeffreys, A. J., Wilson, V., Wood, D. & Simons, J. P. (1980). Linkage of adult α- and β-globin genes in X. laevis and gene duplication by tetraploidization. Cell 21, 555564.CrossRefGoogle Scholar
Kimura, M. (1965). A stochastic model concerning the maintenance of genetic variability in quantitative characters. Proceedings of the National Academy of Science 54, 731736.CrossRefGoogle ScholarPubMed
Krüger, J. & Vogel, F. (1975). Population genetics of unequal crossing over. Journal of Molecular Evolution 4, 201247.CrossRefGoogle Scholar
Lacy, E., Hardison, R. C., Quon, D. & Maniatis, T. (1979). The linkage arrangement of four rabbit β-like globin genes. Cell 18, 12731283.CrossRefGoogle ScholarPubMed
Lauer, J., Shen, C.-K. J. & Maniatis, T. (1980). The chromosomal arrangement of human α-like globin genes: Sequence homology and α-globin gene deletions. Cell 20, 119130.CrossRefGoogle ScholarPubMed
Ohta, T. (1981). Genetic variation in small multigene families. Genetical Research. (In the Press.)CrossRefGoogle ScholarPubMed
Proudfoot, N. J. & Maniatis, T. (1980). The nucleotide sequence of a rabbit β-globin pseudogene. Cell 21, 545553.Google Scholar
Proudfoot, N. J., Shander, M. H. M., Manley, J. L., Gefter, M. L. & Maniatis, T. (1980). Structure and in vitro transcription of human globin genes. Science 209, 13291336.CrossRefGoogle ScholarPubMed
Schimke, R. T. (1980). Gene amplification and drug resistance. Scientific American 243, 5059.CrossRefGoogle ScholarPubMed
Weatherall, D. J. & Clegg, J. B. (1979). Recent developments in the molecular genetics of human hemoglobin. Cell 16, 467479.CrossRefGoogle ScholarPubMed
Zimmer, E. A., Martin, S. L., Beverley, S. M., Kan, Y. W. & Wilson, A. C. (1980). Rapid duplication and loss of genes coding for the a chains of hemoglobin. Proceedings of the National Academy of Science, U.S.A. 77, 21582162CrossRefGoogle ScholarPubMed