Hostname: page-component-7479d7b7d-m9pkr Total loading time: 0 Render date: 2024-07-10T22:38:21.388Z Has data issue: false hasContentIssue false

Mapping of purine markers in Escherichia coli K 12

Published online by Cambridge University Press:  14 April 2009

A. H. Stouthamer
Affiliation:
Laboratory of Microbiology, State University, Catharijnesingel 59, Utrecht, The Netherlands
P. G. de Haan
Affiliation:
Laboratory of Microbiology, State University, Catharijnesingel 59, Utrecht, The Netherlands
H. J. J. Nijkamp
Affiliation:
Laboratory of Microbiology, State University, Catharijnesingel 59, Utrecht, The Netherlands

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A number of mutants of E. coli K 12, deficient in purine biosynthesis, have been isolated and the biochemical blocks have been determined. The mutations were mapped in conjugation experiments. In some cases the differences in penetration times were too small to determine the exact order of the loci by interrupted mating experiments. In these cases the recombination frequencies were determined in four factor crosses. In this way the location of eleven different purine markers has been determined. The loci are scattered over the chromosome. Only two groups of linked genes were found.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1965

References

REFERENCES

Bailey, N. T. J. (1951 a). The estimation of linkage in bacteria. Heredity, Lond. 5, 111124.CrossRefGoogle ScholarPubMed
Bailey, N. T. J. (1951 b). New estimates of some recombination fractions in Escherichia coli, allowing for the influence of differential viability. Heredity, Lond. 5, 289292.CrossRefGoogle Scholar
Bailey, N. T. J. (1961). Introduction to the Mathematical Theory of Genetic Linkage, chap. 8. Oxford: Clarendon Press.Google Scholar
Balis, M. E., Brooke, M. S., Brown, G. B. & Magasanik, B. (1956). The utilization of purines by purineless mutants of Aerobacter aerogenes. J. biol. Chem. 219, 917926.CrossRefGoogle ScholarPubMed
Beckwith, J. R., Pardee, A. B., Austrian, R. & Jacob, F. (1962). Coordination of the synthesis of the enzymes in the pyrimidine pathway of Escherichia coli. J. molec. Biol. 5, 618634.CrossRefGoogle Scholar
Bratton, C. & Marshall, E. K. (1939). A new coupling component for sulfanilamide determination. J. biol. Chem. 128, 537550.CrossRefGoogle Scholar
Buchanan, J. M. & Hartman, S. C. (1959). Enzymatic reactions in the synthesis of the purines. Adv. Enzymol. 21, 199261.Google Scholar
Demerec, M. (1964). Clustering of functionally related genes in Salmonella typhimurium. Proc. natn. Acad. Sci. U.S.A. 51, 10571060.CrossRefGoogle ScholarPubMed
Flaks, J. G., Erwin, M. J. & Buchanan, J. M. (1957). Biosynthesis of the purines. XVIII. 5-Amino-l-ribosyl-4-imidazolecarboxamide-51-phosphate transformylase and inosinicase. J. biol. Chem. 229, 603612.CrossRefGoogle ScholarPubMed
Giles, N. H., Partridge, C. W. H. & Nelson, N. J. (1957). The genetic control of adenylosuccinase in Neuroapora crassa. Proc. natn. Acad. Sci. U.S. 43, 305317.CrossRefGoogle ScholarPubMed
Gollub, E. G. & Gotts, J. S. (1959). Purine metabolism in bacteria. VI. Accumulations by mutants lacking adenylosuccinase. J. Bact. 78, 320325.CrossRefGoogle ScholarPubMed
Gorini, L., Gundersen, W. & Burger, M. (1961). Genetics of regulation of enzyme synthesis in the arginine biosynthetic pathway of Escherichia coli. Cold Spring Harb. Symp. quant. Biol. 26, 173182.CrossRefGoogle ScholarPubMed
Gotts, J. S. (1950). The accumulation of 4-amino-5-imidazole-carboxamide by a purine requiring mutant of Escherichia coli. Archs. Biochem. Biophys. 29, 222224.Google Scholar
Gotts, J. S. & Gollub, E. G. (1957). Sequential blockade in adenine biosynthesis by genetic loss of a bifunctional deacylase. Proc. natn. Acad. Sci. U.S.A. 43, 826834.CrossRefGoogle Scholar
Haan, P. G. de, Stouthamer, A. H., Felix, H. S. & Mol, A. K. (1963). Transfer of F′ from Escherichia coli K 12 to Escherichia coli B and to strains of Paracolobacter and Klebsiella. Antonie van Leeuwenhoek 29, 407420.CrossRefGoogle ScholarPubMed
Hayes, H. (1953). The mechanism of genetic recombination in Escherichia coli. Cold Spring Harb. Symp. quant. Biol. 18, 7593.CrossRefGoogle ScholarPubMed
Hirota, Y. & Sneath, P. H. A. (1961). F and F′ mediated transduction in E. coli K 12. Jap. J. Genet. 36, 307318.CrossRefGoogle Scholar
Ishikawa, T. (1960). Complementation and genetic maps of ad-8 locus in Neurospora crassa. Genetics, 45, 993.Google Scholar
Jacob, F. & Wollman, E. L. (1961). In Sexuality and the Genetics of Bacteria, p. 165. New York, London: Academic Press.Google Scholar
Love, S. H. & Gotts, J. S. (1955). Purine metabolism in bacteria. III. Accumulation of a new pentose-containing arylamine by a purine-requiring mutant of Escherichia coli. J. biol. Chem. 212, 647654.CrossRefGoogle ScholarPubMed
Maas, W. K. (1961). Studies on repression of arginine biosynthesis in Escherichia coli. Cold Spring Harb. Sump. quant. Biol. 26, 183191.CrossRefGoogle ScholarPubMed
Magasanik, B. & Brooke, M. S. (1954). The accumulation of xanthosine by a guanine-less mutant of Aerobacter aerogenes. J. biol. Chem. 206, 8387.CrossRefGoogle ScholarPubMed
Magasanik, B. & Karibian, D. (1960). Purine nucleotide cycles and their metabolic role. J. biol. Chem. 235, 26722681.CrossRefGoogle ScholarPubMed
Pittard, J. & Adelberg, E. A. (1964). Gene transfer by F′ strains of Escherichia coli K 12. III. An analysis of the recombination events occurring in the F′ male and in the zygotes. Genetics, 49, 9951007.CrossRefGoogle Scholar
Reeves, H. (1960). Role of Hfr mutants in F+ × F crosses in E. coli K 12. Nature, Lond. 185, 265266.CrossRefGoogle Scholar
Schulman, M. P. (1961). In Metabolic Pathways, vol. IIB, pp. 389457. New York, London: Academic Press.CrossRefGoogle Scholar
Taylor, A. L. & Adelbebg, E. A. (1960). Linkage analysis with very high frequency males of Escherichia coli. Genetics, 45, 12331243.CrossRefGoogle ScholarPubMed
Yura, T. (1956). Evidence of non-identical alleles in purine-requiring mutants of S. typhi-murium. In Genetic studies with bacteria. Publ. Carneg. Inst. 612, 6375.Google Scholar