Hostname: page-component-7479d7b7d-8zxtt Total loading time: 0 Render date: 2024-07-11T12:39:15.175Z Has data issue: false hasContentIssue false

Inversion heterozygosity and selection for wing length in Drosophila subobscura

Published online by Cambridge University Press:  14 April 2009

Antonio Prevosti
Affiliation:
Department of Genetics, Faculty of Science, University of Barcelona, Spain

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Selection for long or short wings was carried out in three pairs of lines of which two were started from the same basic population. At the end of the selection experiment the frequencies of the chromosomal arrangements were determined in each line and compared with the corresponding original frequencies to see if the chromosomal polymorphism of Drosophila subobscura is related to the genetic variation of size in a regular way.

2. The three pairs of lines show an asymmetrical response to selection. Selection for long wings is less effective in changing the mean of the population than selection for short wings.

3. Heritability is lower in the lines selected for long wings, especially in the later generations of selection.

4. Viability shows a very small decrease during selection in most selected lines.

5. In no case does the coefficient of variability show statistically significant changes, but there is a general tendency for it to decrease.

6. Selection for long wings favours combinations heterozygous for the standard chromosome orders and specific complex inversion orders. Selection for short wings generally fixes in homozygous combination specific complex inversion orders.

7. The heterozygous combinations of the standard chromosomal orders, which are most frequent in northern populations, when combined with the complex inversion orders which are most frequent in southern populations, have a heterotic effect on size.

8. The complex inversion orders usually fixed in homozygous combinations in the lines selected for short wings are those most frequent in southern populations which have a smaller mean size than northern populations.

9. The blocks of genes integrated in ‘supergenes’ in the inverted segments of the chromosomes of D. subobscura differ in genetic composition with respect to the control of wing length.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1967

References

REFERENCES

Falconer, D. S. (1953). Asymmetrical response in selection experiments. I.U.B.S. Symposium on Genetics of Population Structure, Pavia, Italy, August 20–23, 1953. Pp. 1641.Google Scholar
Knight, G. R. (1961). Structural polymorphism in Drosophila subobscura. Coll. from various localities in Scotland. Genet. Res. 2, 19.CrossRefGoogle Scholar
Krimbas, C. B. (1964 a). The genetics of Drosophila subobscura populations. I. Inversion polymorphism in populations of Southern Greece. Evolution, Lancaster, Pa. 18, 541552.CrossRefGoogle Scholar
Krimbas, C. B. (1964 b). The genetics of Drosophila subobscura populations. II. Inversion polymorphism in a population from Holland. Z. VererbLehre, 95, 125128.Google Scholar
Kunze-Mühl, E. & Sperlich, D. (1962). Vergleichende untersuchungen über den chromosomalen Strukturpolymorphismus in Insel und Festland-populationen von Drosophila subobscura. Z. VererbLehre, 93, 237248.Google Scholar
Pentos-Daponte, A. (1964). Qualitative und quantitative Untersuchungen über den chromosomalen Polymorphismus natürlicher Populationen von Drosophila subobscura in der Umgebung von Thessaloniki (Griecheland). Z. VererbLehre, 95, 129144.Google Scholar
Prevosti, A. (1954). Variación geográfica de varios caracteres cuantitativos en poblaciones catalanas de Drosophila subobscura. Genet. iber. 6, 3368.Google Scholar
Prevosti, A. (1955 a). Geographical variability in quantitative traits in populations of Drosophila subobscura. Cold Spring Harb. Symp. quant. Biol, 20, 294299.CrossRefGoogle ScholarPubMed
Prevosti, A. (1955 b). Variación geográfica de caracteres cuantitativos en poblaciones británicas de Drosophila subobscura. Genet. iber. 7, 344.Google Scholar
Prevosti, A. (1956). Resultados de la selección por alas largas y por alas cortas en dos poblaciones naturales de Drosophila subobscura. Genet, iber. 8, 73115.Google Scholar
Prevosti, A. (1960). Cambios en la heterocigosis por inversión cromosómica al variar por selección la longitud del ala en Drosophila subobscura. Genet, iber. 12, 2741.Google Scholar
Prevosti, A. (1964 a). Chromosomal polymorphism in Drosophila subobscura populations from Barcelona (Spain). Genet. Res. 5, 2738.CrossRefGoogle Scholar
Prevosti, A. (1964). Tipos cromosómicos de Drosophila subobscura en una población de Lagrasse (Francia). Genet, iber. 16, 119.Google Scholar
Prevosti, A. (1966 a). Chromosomal polymorphism in western Mediterranean populations of Drosophila subobscura. Genet. Res. 7, 149158.CrossRefGoogle Scholar
Prevosti, A. (1966 b). Inversion heterozygosity and size in a natural population of Drosophila subobscura. Symposium on the Mutational Process: Mutation in Population, Prague, August 9–11, 1965. Pp. 4954.Google Scholar
Reeve, E. C. R. & Robertson, F. W. (1953). Studies in quantitative inheritance. II. Analysis of a strain of Drosophila melanogaster selected for long wings. J. Genet. 51, 276316.CrossRefGoogle Scholar
Robertson, F. W. (1963). The ecological genetics of the growth of Drosophila. 6. The genetic correlation between the duration of the larval period and body size in relation to larval diet. Genet. Res. 4, 7492.CrossRefGoogle Scholar
Robertson, F. W. (1955). The properties of genetic variation. Gold Spring Harb. Symp. quant. Biol. XX, 166177.CrossRefGoogle Scholar
Robertson, F. W. & Reeve, E. (1952). Studies in quantitative inheritance. I. The effects of selection of wing and thorax length in Drosophila melanogaster. J. Genet. 50, 414448.CrossRefGoogle Scholar
Sperlich, D. (1961). Untersuchungen über den chromosomalen Polymorphismus einer Population von Drosophila subobscura auf den liparischen Inseln. Z. VererbLehre, 92, 7484.Google Scholar
Sperlich, D. (1964). Chromosomale Strukturanalyse und Fertilitātsprunfung an einer Marginal Population von Drosophila subobscura. Z. VererbLehre, 95, 7381.Google ScholarPubMed
Sperlich, D. & Kunze-Mühl, E. (1963). Der chromosomale Polymorphismus einer Population von Drosophila subobscura auf der Insel Ustica in Vergleich mit anderen Insel- und Festlandstandorten. Z. VererbLehre, 94, 94100.Google Scholar
Spiess, E. B. (1958). Chromosomal adaptive polymorphism in Drosophila persimilis. II. Effects of population cage conditions on life cycle components. Evolution, Lancaster, Pa. 12, 234245.CrossRefGoogle Scholar
Spiess, E. B. & Langer, B. (1964). Mating speed control by gene arrangement carriers in Drosophila persimilis. Evolution, Lancaster, Pa. 18, 430440.CrossRefGoogle Scholar
Spiess, E. B. & Schuellein, R. J. (1956). Chromosomal adaptive polymorphism in Drosophila persimilis. I. Life cycle components under near optimal conditions. Genetics, 41, 501516.CrossRefGoogle ScholarPubMed
Spiess, E. B. & Spiess, L. D. (1964). Selection for rate of development and gene arrangement frequencies in Drosophila persimilis. Genetics, 50, 863877.CrossRefGoogle ScholarPubMed
Spiess, E. B. & Spiess, L. D. (1966). Selection for rate of development and gene arrangement frequencies in Drosophila persimilis. II. Fitness properties at equilibrium. Genetics, 53, 695708.CrossRefGoogle ScholarPubMed
White, M. J. D. & Andrew, L. E. (1960). Cytogenetics of the grasshopper Moraba scurra. V. Biometric effects of chromosomal inversions. Evolution, Lancaster, Pa. 14, 284291.CrossRefGoogle Scholar
White, M. J. D. & Andrew, L. E. (1962). Effects of chromosomal inversions on size and relative viability in the grasshopper Moraba scurra. Evolution of Living Organisms. (Leeper, G. W., ed.), pp. 94101. Melbourne: Univ. Press.Google Scholar
White, M. J. D., Lewontin, R. C. & Andrew, L. E. (1963). Cytogenetics of the grasshopper Moraba scurra. VII. Geographic variation of adaptive properties of inversions. Evolution, Lancaster, Pa. 17, 147162.Google Scholar