Hostname: page-component-848d4c4894-pjpqr Total loading time: 0 Render date: 2024-06-23T06:02:51.139Z Has data issue: false hasContentIssue false

The Hermes transposable element from the house fly, Musca domestica, is a short inverted repeat-type element of the hobo, Ac, and Tam3 (hAT) element family

Published online by Cambridge University Press:  14 April 2009

William D. Warren
Affiliation:
Center for Agricultural Biotechnology, Maryland Biotechnology Institute, College Park, MD 20742-3351, USA
Peter W. Atkinson
Affiliation:
CSIRO Division of Entomology, Black Mountain, Canberra, ACT 2601, Australia
David A. O'Brochta
Affiliation:
Center for Agricultural Biotechnology, Maryland Biotechnology Institute, College Park, MD 20742-3351, USA

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The genome of the house fly, Musca domestica, contains an active transposable element system, called Hermes. Using PCR and inverse PCR we amplified and sequenced overlapping segments of several Hermes elements and from these data we have constructed a 2749 bp consensus Hermes DNA sequence. Hermes termini are composed of 17 bp imperfect inverted repeats that are almost identical to the inverted terminal repeats of the hobo element of Drosophila melanogaster. Full length Hermes elements contain a single long ORF capable of encoding a protein of 612 amino acids which is 55% identical to the amino acid sequence of the hobo transposase. Comparison of the ends of the Hermes and hobo elements to those of the Ac element of Zea mays, and the Tam3 element of Antirrhinum majus, as well as several other plant and insect elements, revealed a conserved terminal sequence motif. Thus Hermes is clearly a member of the hobo, Ac and Tam3 (hAT) transposable element family, other members of which include the Tagl element from Arabidopsis thaliana and the Bg element from Zea mays. The evolution of this class of transposable elements and the potential utility of Hermes as a genetic tool in M. domestica and related species are discussed.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1994

References

Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology 215, 403410.CrossRefGoogle ScholarPubMed
Atkinson, P. W., Warren, W. D., & O'Brochta, D. A. (1993). The hobo transposable element of Drosophila can be cross-mobilized in houseflies and excises like the Ac element of maize. Proceedings of the National Academy of Sciences, U.S.A. 90, 96939697.CrossRefGoogle Scholar
Baker, B., Schell, J., Lörz, H. & Fedoroff, N. (1986). Transposition of the maize controlling element ‘Activator’ in tobacco. Proceedings of the National Academy of Sciences, U.S.A. 83, 48444848.CrossRefGoogle ScholarPubMed
Behrens, B., Fedoroff, N., Laird, A., Müller-Neumann, M., Starlinger, P. & Yoder, J. (1984). Cloning of the Zea mays controlling element Ac from the wx-m7 allele. Molecular and General Genetics 194, 346347.CrossRefGoogle Scholar
Bender, W., Spierer, P. & Hogness, D. S. (1983). Chromosomal walking and jumping to isolate DNA from the Ace and rosy loci and the bithorax complex in Drosophila melanogaster. Journal of Molecular Biology 168, 1733.CrossRefGoogle ScholarPubMed
Berg, D. E. & Howe, M. M. (1989). Mobile DNA. Washington DC: American Society for Microbiology Publications.Google Scholar
Bhattacharyya, M. K., Smith, A. M., Ellis, T. H. N., Hedley, C. & Martin, C. (1990). The wrinkled-seed character of the pea described by Mendel is caused by a transposon-like insertion in a gene encoding starchbranching enzyme. Cell 60, 115122.CrossRefGoogle Scholar
Blackman, R. K., Macy, M., Koehler, D., Grimaila, R. & Gelbart, W. M. (1989). Identification of a fully-functional hobo transposable element and its use for germ-like transformation. EMBO Journal 8, 211217.CrossRefGoogle Scholar
Boussy, I. A. & Daniels, S. B. (1991). hobo elements in Drosophila melanogaster and D. simulans. Genetical Research 58, 2734.CrossRefGoogle ScholarPubMed
Calvi, B. R., Hong, T. J., Findley, S. D. & Gelbart, W. M. (1991). Evidence for a common evolutionary origin of inverted repeat transposons in Drosophila and plants: hobo, Activator, and Tam3. Cell 66, 465471.CrossRefGoogle ScholarPubMed
Capy, P., Anxolabéhère, D. & Langin, T. (1994). The strange phylogenies of transposable elements: are horizontal transfers the only explanation? Trends in Genetics 10, 712.CrossRefGoogle Scholar
Chuck, G., Robbins, T., Nijjar, C., Ralston, E., Courtney-Gutterson, N. & Dooner, H. K. (1993). Tagging and cloning of a Petunia flower color gene with the maize transposable element Activator. The Plant Cell 5, 371378.CrossRefGoogle ScholarPubMed
Coen, E. S., Carpenter, R. & Martin, C. (1986). Transposable elements generate novel spatial patterns of gene expression in Antirrhinum majus. Cell 47, 285296.CrossRefGoogle ScholarPubMed
Daniels, S. B., Chovnick, A. & Boussy, I. A. (1990). Distribution of the hobo transposable element in the genus Drosophila. Molecular Biology and Evolution 7, 589606.Google ScholarPubMed
Devereux, J., Haeberli, P. & Smithies, O. (1984). A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Research 12, 387395.CrossRefGoogle ScholarPubMed
Fedoroff, N., Wessler, S. & Shure, M. (1983). Isolation of the transposable maize controlling elements Ac and Ds. Cell 35, 235242.CrossRefGoogle ScholarPubMed
Feldmar, S. & Kunze, R. (1991). The ORFa protein, the putative transposase of maize transposable element Ac, has a basic DNA binding domain. EMBO Journal 10, 40034010.CrossRefGoogle Scholar
Geiser, M., Week, E., Döring, H.-P., Werr, W., Courage-Tebbe, U., Tillmann, E. & Starlinger, P. (1982). Genomic clones of a wild-type allele and a transposable elementinduced mutant allele of the sucrose synthase gene of Zea mays L. EMBO Journal 1, 14551460.CrossRefGoogle Scholar
Hartings, H., Spilmont, C., Lazzaroni, N., Rossi, V., Salamini, F., Thompson, R. D. & Motto, M. (1991). Molecular analysis of the Bg-rbg transposable element system of Zea mays L. Molecular and General Genetics 227, 9196.CrossRefGoogle ScholarPubMed
Hehl, R., Nacken, W. K. F., Krause, A., Saedler, H. & Sommer, H. (1991). Structural analysis of Tam3, a transposable element from Antirrhinum majus, reveals homologies to the Ac element of maize. Plant Molecular Biology 16, 369371.CrossRefGoogle Scholar
Henikoff, S. (1987). Unidirectional digestion with exonuclease III in DNA sequence analysis. Methods in Enzymology 155, 156165.CrossRefGoogle ScholarPubMed
Herrmann, A., Schulz, W. & Hahlbrock, K. (1988). Two alleles of the single-copy chalcone synthase gene in parsley differ by a transposon-like element. Molecular and General Genetics 212, 9398.CrossRefGoogle ScholarPubMed
Hesse, J. E., Lieber, M. R., Mizuuchi, K. & Gellert, M. (1989). V(D)J recombination: a functional definition of the joining signals. Genes in Development 3, 10531061.CrossRefGoogle ScholarPubMed
Johns, M. A. (1990). Sequences related to the maize transposable element Ac in the genus Zea. Journal of Molecular Evolution 30, 493499.CrossRefGoogle Scholar
Kay, B. K. & Dawid, I. B. (1983). The 1723 element: a long, homogenous, highly repeated DNA unit interspersed in the genome of Xenopus laevis. Journal of Molecular Evolution 170, 583596.CrossRefGoogle ScholarPubMed
Knapp, S., Coupland, G., Uhrig, H., Starlinger, P. & Salamini, F. (1988). Transposition of the maize transposable element Ac in Solanum tuberosum. Molecular and General Genetics 213, 285290.CrossRefGoogle Scholar
Lieber, M. R. (1991). Site-specific recombination in the immune system. FASEB Journal 5, 29342944.CrossRefGoogle ScholarPubMed
MacRae, A. F., Learn, G. H., Karjala, M. & Clegg, M. T. (1990). Presence of an Activator (Ac)-like sequence in Pennisetum glaucum (pearl millet). Plant Molecular Biology 15, 177179.CrossRefGoogle ScholarPubMed
MacRae, A. F. & Clegg, M. T. (1992). Evolution of Ac and Ds1 elements in select grasses (Poaceae). Genetica 86, 5566.CrossRefGoogle ScholarPubMed
Martin, C., Prescott, A., Lister, C. & MacKay, S. (1989). Activity of the transposon Tami in Antirrhinum and tobacco: possible role of DNA methylation. EMBO Journal 8, 9771004.CrossRefGoogle Scholar
McClintock, B. (1956). Controlling elements and the gene. Cold Spring Harbor Symposia on Quantitative Biology 21, 197216.CrossRefGoogle ScholarPubMed
McGinnis, W., Shermoen, A. W. & Beckendorf, S. K. (1983). A transposable element inserted just 5' to a Drosophila glue protein gene alters gene expression and chromatin structure. Cell 34, 7584.CrossRefGoogle ScholarPubMed
Miklos, G. L. G. (1984). The isolation of high molecular weight DNA from adult heads of D. melanogaster. Drosophila Information Service 60, 222223.Google Scholar
O'Brochta, D. A., Warren, W. D., Saville, K. J. & Atkinson, P. W. (1994). Interplasmic transposition of Drosophila hobo elements in non-drosophilid insects. Molecular and General Genetics 244, 914.CrossRefGoogle Scholar
Ochman, H., Gerber, A. S. & Hartl, D. L. (1988). Genetic applications of an inverse polymerase chain reaction. Genetics 120, 621623.CrossRefGoogle ScholarPubMed
Pascual, L. & Periquet, G. (1991). Distribution of hobo transposable elements in natural populations of Drosophila melanogaster. Molecular Biology and Evolution 8, 282296.Google ScholarPubMed
Peterson, P. A. (1986). Mobile genetic elements in maize: a force in evolutionary and plant breeding processes. In Genetics, Development and Evolution (ed. Gustafson, J. B., Stebbins, G. L. and Ayala, F. J.), pp. 4778. New York: Plenum.CrossRefGoogle Scholar
Pohlman, R. F., Fendoroff, N. V. & Messing, J. (1984). The nucleotide sequence of the maize controlling element Activator. Cell 37, 635643.CrossRefGoogle ScholarPubMed
Roth, D. B., Menetski, J. P., Nakajima, P. B., Bosma, M. J. & Gellert, M. (1992). V(D)J recombination: broken DNA molecules with covalently sealed (hairpin) coding ends in scid mouse thymocytes. Cell 70, 983991.CrossRefGoogle ScholarPubMed
Sanger, F., Nicklen, S. & Coulson, A. R. (1977). DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of Sciences, U.S.A. 74, 54635467.CrossRefGoogle ScholarPubMed
Simmons, G. M. (1992). Horizontal transfer of hobo transposable elements within the Drosophila melanogaster species complex: evidence from DNA sequencing. Molecular Biology and Evolution 9, 10501060.Google ScholarPubMed
Streck, R. D., MacGaffey, J. E. & Beckendorf, S. K. (1986). The structure of hobo transposable elements and their insertion sites. EMBO Journal 5, 36153623.CrossRefGoogle ScholarPubMed
Tonegawa, S. (1983). Somatic generation of antibody diversity. Nature 302, 575581.CrossRefGoogle ScholarPubMed
Triglia, T., Peterson, M. G. & Kemp, D. J. (1988). A procedure for in vitro amplification of DNA segments that lie outside the boundaries of known sequences. Nucleic Acids Research 16, 8186.CrossRefGoogle ScholarPubMed
Tsay, Y.-F., Frank, M. J., Page, T., Dean, C. & Crawford, N. M. (1993). Identification of a mobile endogenous transposon in Arabidopsis thaliana. Science 260, 342344.CrossRefGoogle ScholarPubMed
Van Sluys, M. A., Tempe, J., & Fedoroff, N., (1987). Studies on the introduction and mobility of the maize I element in Arabidopsis thaliana and Daucus carota. EMBO Journal 6, 38813889.CrossRefGoogle Scholar
Vershinin, A., Salina, E. A., Svitashev, S. K. & Shumny, V. K. (1987). The occurrence of Ds-like sequences in cereal genomes. Theoretical and Applied Genetics 73, 428432.CrossRefGoogle ScholarPubMed
Wobus, U., Baumlein, H., Bogachev, S. S., Bosevich, I. V., Panitz, R. & Kolesnikov, N. N. (1990). A new transposable element in Chironomus thummi. Molecular and General Genetics 222, 311316.CrossRefGoogle ScholarPubMed
Yoder, J. I., Palys, J., Alpert, K. & Lassner, M. (1988). Ac transposition in transgenic tobacco plants. Molecular and General Genetics 213, 291296.CrossRefGoogle Scholar