Hostname: page-component-7479d7b7d-pfhbr Total loading time: 0 Render date: 2024-07-11T02:18:58.287Z Has data issue: false hasContentIssue false

Evidence for transductional shortening of the plasmid obtained by recombination between the TOL catabolic plasmid and the R91 R plasmid

Published online by Cambridge University Press:  14 April 2009

G. P. White
Affiliation:
School of Biological Technology, University of New South Wales, Kensington, N.S.W. 2033, Australia
N. W. Dunn
Affiliation:
School of Biological Technology, University of New South Wales, Kensington, N.S.W. 2033, Australia

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The previously isolated plasmid pND3, arising from recombination between the TOL catabolic plasmid and the R plasmid R91, was transduced by pf16 in Pseudomonas putida. Apparent transductional shortening was evident in 25% of the transduced pND3 plasmids. Transductants were isolated which had segregated the antibiotic resistance marker, transfer ability and some of the catabolic functions of the parent plasmid.

Type
Short papers
Copyright
Copyright © Cambridge University Press 1978

References

REFERENCES

Chakrabarty, A. M. (1972). Genetic basis of the biodegradation of salicylate in Pseudomonas. Journal of Bacteriology 112. 815823.CrossRefGoogle ScholarPubMed
Chandler, P. M. & Krishnapillai, V. (1974 a) Phenotypic properties of R factors of Pseudomonas aeruginosa: R factors transmissible only in Pseudomonas aeruginosa. Genetical Research 23. 251258.CrossRefGoogle Scholar
Chandler, P. M. & Krishnapillai, V. (1974 b). Phenotypic properties of R factors of Pseudomonas aeruginosa: R factors readily transferable between Pseudomonas and the Enlerobacteriaceae. Genetical Research 23. 239250.CrossRefGoogle Scholar
Dunn, N. W. & Gunsalus, I. C. (1973). Transmissible plasmid coding early enzymes of naphthalene oxidation in Pseudomonas putida. Journal of Bacteriology 114. 974979.CrossRefGoogle ScholarPubMed
Falkow, S. (1975). Infectious Multiple Drug Resistance pp. 8387. London: Pion.Google Scholar
Fredericq, P. (1969). The recombination of colicinogenic factors with other episomes and plasmids. Ciba Foundation Symposium: Bacterial Episomes and Plasmids, pp. 163178. London: J. and A. Churchill.Google Scholar
Gunsalus, I. C., Gunsalus, C. F., Chakrabarty, A. M., Sikes, S. & Crawford, I. P. (1968). Fine structure mapping of the tryptophan genes in Pseudomonas putida. Genetics 60. 419435.CrossRefGoogle ScholarPubMed
Novick, R. P. (1967). Penicillinase plasmids of Staphylococcus aureus. Federation Proceedings 26. 2938.Google ScholarPubMed
Novick, R. P. (1969). Extrachromosomal inheritance in bacteria. Bacteriological Reviews 33. 210263.CrossRefGoogle ScholarPubMed
Novick, R. P., Clowes, R. C., Cohen, S. N., Curtiss, R., Datta, N. & Falkow, S. (1976). Uniform nomenclature for bacterial plasmids: a proposal. Bacteriological Reviews 40. 168189.CrossRefGoogle ScholarPubMed
Olsen, R. H. & Shipley, P. (1973). Host range and properties of the Pseudomonas aeruginosa R factor R1822. Journal of Bacteriology 113. 772780.CrossRefGoogle ScholarPubMed
Shipley, P. L. & Olsen, R. H. (1975). Isolation of a nontransmissible antibiotic resistance plasmid by transductional shortening of R factor RP1. Journal of Bacteriology 123. 2027.CrossRefGoogle ScholarPubMed
Stanisich, V. A., Bennett, P. M. & Ortiz, J. M. (1976). A molecular analysis of transductional marker rescue involving P-group plasmids in Pseudomonas aeruginosa. Molecular and General Genetics 143. 333337.CrossRefGoogle ScholarPubMed
Watanabe, T. (1963). Infective heredity of multiple drug resistance in bacteria. Bacteriological Reviews 27. 87115.CrossRefGoogle ScholarPubMed
White, G. P. & Dunn, N. W. (1977). The apparent fusion of the TOL plasmid with the R91 drug resistance plasmid in Pseudomonas aeruginosa. Australian Journal of Biological Science. (In the Press.)CrossRefGoogle Scholar
Williams, P. A. & Murray, K. (1974). Metabolism of benzoate and the methyl benzoates by Pseudomonas putida (arvilla) mt-2: evidence for the existence of a TOL plasmid. Journal of Bacteriology 120. 417423.CrossRefGoogle Scholar
Wong, C. L. & Dunn, N. W. (1974). Transmissible plasmid coding for the degradation of benzoate and m-toluate in Pseudomonas arvilla mt-2. Genetical Research 23. 227232.CrossRefGoogle ScholarPubMed
Wong, C. L. & Dunn, N. W. (1976). Combined chromosomal and plasmid encoded control for the degradation of phenol in Pseudomonas putida. Genetical Research 27. 405412.CrossRefGoogle ScholarPubMed
Worsey, M. J. & Williams, P. A. (1975). Metabolism of toluene and xylenes by Pseudomonas putida (arvilla) mt-2: evidence for a new function of the TOL plasmid. Journal of Bacteriology 124. 713.CrossRefGoogle ScholarPubMed