Hostname: page-component-77c89778f8-m8s7h Total loading time: 0 Render date: 2024-07-20T21:41:50.472Z Has data issue: false hasContentIssue false

Differential regulation of P and hobo mobile elements by two laboratory strains of Drosophila melanogaster

Published online by Cambridge University Press:  14 April 2009

George Yannopoulos*
Affiliation:
Department of Biology, Division of Genetics, Cell and Developmental Biology, University of Patras, Patras, Greece, GR 26110
Sophia Zabalou
Affiliation:
Department of Biology, Division of Genetics, Cell and Developmental Biology, University of Patras, Patras, Greece, GR 26110
Nikos Stamatis
Affiliation:
Department of Biology, Division of Genetics, Cell and Developmental Biology, University of Patras, Patras, Greece, GR 26110
George Tsamathis
Affiliation:
Department of Biology, Division of Genetics, Cell and Developmental Biology, University of Patras, Patras, Greece, GR 26110
*
* Corresponding author

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Analysis of the transposition behaviour of the P and hobo elements borne by the 31·1/CyL4 MRF (P), 23·5Δ/CyL4 MRF (hobo) and 23·5*/Cy MRF (hobo) strains in the progeny of dysgenic crosses with two ME laboratory strains (Berlin-k and dp b en bw) at 25 °C revealed that: (a) the two ME laboratory strains affect differently the transposition rates of P and hobo elements. More precisely, P element transposition is higher in heterozygotes with dp b en bw than in those with Berlin-k. In contrast, the transposition rate of hobo elements is higher in Berlin-k than in dp b cn bw heterozygotes. (b) Like P, hobo has the potential to transpose at high frequencies and to nonhomologous chromosomes, (c) The dysgenically inactive hobo elements of the 3·11 MRF strain transpose more frequently than the dysgenically active hobo elements of the 23·5 MRF strains in certain crosses, (d) There are insertion hot spots for P and hobo elements. For the P elements there are enough data to suggest that the insertion hot spots are different in the two EM strains. The data are discussed on the basis of the involvement of putative host factors in transposition regulation of the P and hobo elements.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1994

References

Ajioka, W. J. & Eanes, W. F. (1989). The accumulation of P-elements on the tip of the X chromosome in populations of Drosophila melanogaster. Genetical Research 53, 16.CrossRefGoogle ScholarPubMed
Bingham, P., Kidwell, M. G. & Rubin, G. M. (1982). The molecular basis of hybrid dysgenesis: the role of the P-element, a P-strain specific transposon family. Cell 29, 9951004.CrossRefGoogle ScholarPubMed
Black, D. M., Jackson, M. S., Kidwell, M. G. & Dover, G. A. (1987). KP elements repress P induced hybrid dysgenesis in Drosophila melanogaster. The EMBO Journal 6, 41254135.CrossRefGoogle ScholarPubMed
Blackman, R. K. & Gelbart, W. M. (1989). The transposable element hobo of Drosophila melanogaster. In Mobile DNA (ed. Berg, D. and Howe, M.), American Society for Microbiology Publications, pp. 523529.Google Scholar
Blackman, R. K., Grimaila, R., Koehler, M. M. D. and Gelbart, W. M. (1987). Mobilization of hobo elements residing within the decapentaplegic gene complex: suggestion of a new hybrid dysgenesis system in Drosophila melanogaster. Cell 49, 497505.CrossRefGoogle ScholarPubMed
Bridges, C. B. (1938). A revised map of the salivary gland X cromosome of D. melanogaster. The Journal of Heredity 29, 1113.CrossRefGoogle Scholar
Calvi, B. R., Hong, T. J., Findley, S. D. & Gelbart, W. M. (1991). Evidence for a common evolutionary origin of inverted repeat transposons in Drosophila and plants. Cell 86, 465&471.Google Scholar
Chia, W., Howes, G., Martin, M., Meng, Y. B., Moses, K. & Tsubota, S. (1986). Molecular analysis of the yellow locus of Drosophila. The EMBO Journal 5, 35973605.CrossRefGoogle ScholarPubMed
Daniels, S. B., Boussy, I., Tuckey, A. A., Carillo, M. & Kidwell, M. G. (1988). Variability among “true M’ lines in P-M gonadal dysgenesis potential. Drosophila Information Service (DIS) 66, 3739.Google Scholar
Eggleston, W. B., Johnson-Schlitz, D. M. & Engels, W. R. (1988). P-M dysgenesis does not mobilize other transposable elements in D. melanogaster. Nature 331, 368370.CrossRefGoogle Scholar
Eeken, J. C. J. (1982). The stability of mutator (MR)-induced X-chromosomal recessive visible mutations in Drosophila melanogaster. Mutation Research 96, 213224.CrossRefGoogle ScholarPubMed
Eeken, J. C. J., Roneyn, R. J., de Jong, A. W. M., Yannopoulos, G. & Pastink, A. (1991). Characterization of MR (P) strains of Drosophila melanogaster: the number of intact P elements and their genetic effect. Genetical Research 58, 211223.CrossRefGoogle Scholar
Engels, W. R. (1989). P elements in Drosophila. In Mobile DNA. (ed. Berg, D. E. and Howe, M. M.) American Society for Microbiology Publications; pp. 437484.Google Scholar
Fawcett, D. H., Lister, C. K., Kellett, E. & Finnegan, D. J. (1986). Transposable elements controlling I-R hybrid dysgenesis in D. melanogaster are similar to mammalian LINEs. Cell 47, 10071015.CrossRefGoogle Scholar
Finnegan, D. J. (1989). I factors in Drosophila melanogaster and similar elements in other eukaryotes. In Mobile DNA. (ed. Berg, D. and Howe, M.). American Society for Microbiology Publications, pp. 503517.Google Scholar
Harada, K., Yuruhiro, K. & Mukai, T. (1990) Transposition rates of movable elements in Drosophila melanogaster. Proceedings of the National Academy of Sciences, USA 87, 32483252.CrossRefGoogle ScholarPubMed
Karess, R. E. & Rubin, G. M. (1984). Analysis of P element function in Drosophila. Cell 38, 135146.CrossRefGoogle ScholarPubMed
Kelley, M. R., Kidd, S., Berg, R. L. & Young, M. W. (1987). Restriction of P element insertions at the Notch locus of Drosophila melanogaster. Molecular and Cell Biology 7, 15451548.Google ScholarPubMed
Kidwell, M. G., Kidwell, J. F. & Sved, J. A. (1977). Hybrid dysgenesis in Drosophila melanogaster: A syndrome of aberrant traits including mutation, sterility and male recombination. Genetics 36, 813883.CrossRefGoogle Scholar
Kaufman, P. K., Doll, R. F. & Rio, D. C. (1989). Drosophila P element transposase recognizes internal P element DNA sequences. Cell 59, 359–371CrossRefGoogle ScholarPubMed
Lefevre, G. Jr (1976). A photographic representation and interpretation of the poletene chromosomes of Drosophila melanogaster salivary glands. In: Genetic and Biology of Drosophila. Vol. 1a (ed. Ashburner, M. and Novitski, E.) pp. 3166. New York.Google Scholar
Levis, R., Hazelrigg, T. & Rubin, G. M. (1985). Effects of genomic position on the expression of transduced copies of the white gene of Drosophila. Science 229, 558561.Google Scholar
Lindsley, D. L. & Grell, E. H. (1968). Genetic variation of Drosophila melanogaster. Carnegie Institute of Washington Publication, No. 627.Google Scholar
Louis, C. & Yannopoulos, G. (1988). Transposable elements involved in hybrid dysgenesis in Drosophila melanogaster. Oxford Surveys in Eukaryotic Genes, Vol. 5, pp. 205250.Google ScholarPubMed
Monastirioti, M., Hatzopoulos, P., Stamatis, N., Yannopoulos, G. & Louis, C. (1988). Cohabitation of KP and full-length P elements in the genome of strains of D. melanogaster inducing P-M-like hybrid dysgenesis. Molecular and General Genetics 215, 9499.CrossRefGoogle ScholarPubMed
O'Hare, K. & Rubin, G. M. (1983). Structures of P transposable elements and their sites of insertion and excision in the Drosophila melanogaster genome. Cell 34, 2535.CrossRefGoogle ScholarPubMed
Parker, E. R. (1976). Introductory Statistics for Biology. Edward Arnold Ltd.Google Scholar
Periquet, G., Hamelin, M. H., Bigot, Y. & Kai, H. (1989). Presence of the deleted hobo element Th in Eurasian populations of Drosophila melanogaster. Genetics Selection Evolution 21, 107111.CrossRefGoogle Scholar
Rio, D. C. & Rubin, G. M. (1988). Identification and purification of a Drosophila protein that binds to the terminal 31-base-pair inverted repeats of the P transposable element. Proceedings of the National Academy of Sciences, USA 85, 89298933.CrossRefGoogle Scholar
Robertson, H. M., Preston, C. R., Phillis, R. W., Johnson-Schlitz, D., Benz, W. K. & Engels, W. R. (1988). A stable genomic source of P element transposase in Drosophila melanogaster. Genetics 118, 461470.CrossRefGoogle ScholarPubMed
Searles, L. L., Greanleafg, A. L., Kemp, W. E. & Voelker, R. A. (1986). Sites of P element insertions and structures of P element deletions in the 5' region of Drosophila melanogaster RPII215. Molecular and Cell Biology 6, 33123319.Google ScholarPubMed
Saunders, R. D. C., Glover, D. M., Ashburner, M., Siden-Kiamos, I., Louis, C., Monastirioti, M., Savakis, C. & Kafatos, F. (1989). PCR amplification of DNA micro-dissected polytene from a single chromosome band: a comparison with conventional microcloning. Nucleic Acids Research 17, 90279037.CrossRefGoogle Scholar
Snedecor, W. G. & Cochran, G. W. (1972). Statistical methods (Sixth Edition). The Iowa State University Press.Google Scholar
Spradling, A. C. & Rubin, G. M. (1983). The effect of chromosomal position on the expression of the Drosophila xanthin dehydrogenase gene. Cell 34, 47N–57.CrossRefGoogle ScholarPubMed
Stamatis, N., Yannopoulos, G. & Pelecanos, M. (1981). Comparative studies of two male recombination factors (MRF) isolated from a southern Greek Drosophila melanogaster population. Genetical Research 38,125–135.Google Scholar
Stamatis, N., Monastirioti, M., Yannopoulos, G. & Louis, C. (1989). The P-M and 23–5 MRF (hobo) systems of hybrid dysgenesis in Drosophila melanogaster are independent of each other. Genetics 123, 379387.CrossRefGoogle Scholar
Sved, J. (1987). Hybrid dysgenesis in Drosophila melanogaster: evidence from sterility and Southern hybridization tests that P cytotypes are not maintained in the absence of P factors. Genetics 115, 121127.CrossRefGoogle Scholar
Tsubota, S., Ashburner, M. & Schedl, P. (1985). P element induced control mutations at the r gene of Drosophila melanogaster. Molecular and Cell Biology 5, 25672574.Google Scholar
Woodruff, R. C., Blount, J. L. & Thompson, J. N. Jr (1987). Hybrid dysgenesis in D. melanogaster is not a general release mechanism for DNA transpositions. Science 237, 12061208.CrossRefGoogle Scholar
Yannopoulos, G. (1978). Studies on the sterility induced by the male recombination factor 31–1 MRF in Drosophila melanogaster. Genetical Research 32, 239247.Google Scholar
Yannopoulos, G. & Pelecanos, M. (1977). Studies on male recombination in a southern Greek Drosophila melanogaster population. Genetical Research 29, 231238.CrossRefGoogle Scholar
Yannopoulos, G., Stamatis, N. & Eeken, J.C.J. (1986). Differences in the cytotype and hybrid dysgenesis inducing abilities of different P strains of Drosophila melanogaster. Experientia 42, 12831285.CrossRefGoogle Scholar
Yannopoulos, G., Stamatis, N., Monastirioti, M., Hatzopoulos, P. & Louis, C. (1987). Hobo is responsible for the induction of hybrid dysgenesis by strains of Drosophila melanogaster bearing the male recombination factor 23–5 MRF. Cell 49, 487495.Google Scholar