Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-25T21:18:27.824Z Has data issue: false hasContentIssue false

Controlling elements in the mouse X-chromosome

II. Location in the linkage map

Published online by Cambridge University Press:  14 April 2009

B. M. Cattanach
Affiliation:
Department of Biology, City of Hope Medical Center, Duarte, California, U.S.A.
J. N. Perez
Affiliation:
Department of Biology, City of Hope Medical Center, Duarte, California, U.S.A.
C. E. Pollard
Affiliation:
Department of Biology, City of Hope Medical Center, Duarte, California, U.S.A.
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The frequency and nature of the changes in ‘state’ of the mouse X-chromosome controlling element (inactivation centre) have been investigated on an inbred background. The results indicate with near-certainty that meiotic crossing over is the responsible mechanism and that the frequency of recombination between the T(1; X)Ct breakpoint and the locus of the controlling element is approximately 3%. Maize-type ‘changes in state’ may occur under other experimental conditions. The data do not distinguish on which side of the autosomal insertion the element lies but when combined with observations of other investigators suggest that the location must be on the Mo-Ta side and very close to Ta.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1970

References

REFERENCES

Baker, W. K. (1968). Position effect variegation. Adv. Genetics 14, 133169.CrossRefGoogle ScholarPubMed
Cattanach, B. M. (1961). A chemically-induced variegated-type position effect in the mouse Z. VererbLehre 92, 165182.Google ScholarPubMed
Cattanach, B. M. (1963). The inactive-X hypothesis and position effects in the mouse. Genetics 48, 884885.Google Scholar
Cattanach, B. M. (1966). The location of Cattanach's translocation in the X-chromosome linkage map of the mouse. Genet. Res., Camb. 8, 253256.CrossRefGoogle ScholarPubMed
Cattanach, B. M. (1968). Incomplete inactivation of the Tabby locus in the mouse X-chromosome. Genetics 60, 168.Google Scholar
Cattanach, B. M. & Isaacson, J. H. (1965). Genetic control over the inactivation of autosomal genes attached to the X-chromosome. Z. VerebLehre 96, 313323.Google ScholarPubMed
Cattanach, B. M. & Isaacson, J. H. (1967). Controlling elements in the mouse X-chromosome. Genetics 57, 331346.CrossRefGoogle ScholarPubMed
Cattanach, B. M. & Perez, J. N. (1970). Parental influence on X-autosome translocation-induced variegation in the mouse. Genet. Res. (in Press).CrossRefGoogle ScholarPubMed
Cattanach, B. M., Pollard, C. E. & Perez, J. N. (1969). Controlling elements in the mouse X-chromosome. I. Interaction with the X-linked genes. Genet. Res. 14, 223.CrossRefGoogle ScholarPubMed
Dun, R. B. (1959). The development and growth of vibrissae in the house mouse with particular reference to the time of action of the Tabby (Ta) and ragged (Ra) genes. Aust. J. Biol. Sci. 12, 313330.CrossRefGoogle Scholar
Dun, R. B. & Fraser, A. S. (1959). Selection for an invariant character, vibrissae number in the house mouse. Aust. J. Biol. Sci. 12, 506523.CrossRefGoogle Scholar
Grumbach, M. M. (1964). Session I. Discussion, pp. 6267. Second Int. Conf. Congenital Malformations. New York: International Medical Congress, Ltd.Google Scholar
Lewis, E. B. (1950). The phenomenon of position effect variegation. Adv. Genetics 3, 73115.CrossRefGoogle Scholar
Lyon, M. F. (1961). Gene action in the X-chromosome of the mouse (Mus musculus). Nature, 190, 372373.CrossRefGoogle ScholarPubMed
Lyon, M. F. (1964). Session I. Discussion, pp. 6768. Second Int. Conf. Congenital Malformations. New York: International Medical Congress, Ltd.Google Scholar
Lyon, M. F. (1966). Lack of evidence that inactivation of the mouse X-chromosome is incomplete. Genet. Res., Camb. 8, 197203.CrossRefGoogle ScholarPubMed
Lyon, M. F. (1968). Chromosomal and subchromosomal inactivation. Ann. Rev. Genet. 2, 3152.CrossRefGoogle Scholar
Lyon, M. F., Searle, A. G., Ford, C. E. & Ohno, S. (1964). A mouse translocation suppressing sex-linked variegation. Cytogenetics 3, 306323.CrossRefGoogle ScholarPubMed
McClintock, B. (1950). The origin and behaviour of mutable loci in maize. Proc natn. Acad. Sci. 36, 344355.CrossRefGoogle ScholarPubMed
McClintock, B. (1965). The control of gene action in maize. Brookhaven Symp. Biol. 18, 162184.Google Scholar
Ohno, S. & Cattanach, B. M. (1962). Cytological study of an X-autosome translocation in Mus musculus. Cytogenetics 1, 129140.CrossRefGoogle ScholarPubMed
Russell, L. B. (1963). Mammalian X-chromosome action: Inactivation limited in spread and in region of origin. Science, 140, 976978.CrossRefGoogle ScholarPubMed
Russell, L. B. (1964). Another look at the single-active-X hypothesis. Trans. N.Y. acad. Sci. Ser. II. 26, 726736.CrossRefGoogle Scholar
Russell, L. B. & Bangham, J. W. (1959). Variegated-type position effects in the mouse. Genetics 44, 532.Google Scholar
Russell, L. B., Bangham, J. W. & Saylors, C. L. (1962). Delimitation of chromosomal regions involved in V-type position effects from X-autosome translocations in the mouse. Genetics 47, 981982.Google Scholar