Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-26T18:05:12.168Z Has data issue: false hasContentIssue false

Clear plaque mutation sites linked to the immI region of the Salmonella phage P22

Published online by Cambridge University Press:  14 April 2009

Hermann H. Prell
Affiliation:
Abt. für Molekulare Genetik der Gesellschaft für Strahlen- und Umweltforschung mbH München in Göttingen, D-3400 Göttingen, Federal Republic of Germany
Johanna M. Auer
Affiliation:
Abt. für Molekulare Genetik der Gesellschaft für Strahlen- und Umweltforschung mbH München in Göttingen, D-3400 Göttingen, Federal Republic of Germany
Jiri Soška
Affiliation:
Institute of Biophysics, Czechoslovak Academy of Sciences, Brno 12, ČSSR
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A complete genetic map has been established for the P22 clear plaque forming mutations cir4-l, cir5-l and cir6-l. These are located within or closely linked to the immI region of P22 and represent a new class of clear plaque forming mutants located outside and rather distant from the immC region. They were mapped with respect to the markers mnt, vy and ant of the immI region and to genes 16 and 9 which span it. The three cir mutations complement each other and – with one possible exception – the cl, c2 and c3 mutations of the immC region. P22 cir6-l – like P22 cir5-l (Harvey et al. 1981) – is suppressed by the antam19 allele, whereas P22 cir4-l is not. The results are discussed in terms of the regulation of early ant expression.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1983

References

REFERENCES

Bezdek, M. & Amati, P. (1968). Evidence for two immunity regulator systems in temperate bacteriophage P22 and L. Virology 36, 701703.CrossRefGoogle Scholar
Bezdek, M. & Soska, J. (1970). Evidence for an early regulatory function in phage P22. Molecular and General Genetics 108, 243248.Google Scholar
Botstein, D., Chan, R. K. & Waddel, C. H. (1972). Genetics of bacteriophage P22. II. Gene order and gene function. Virology 49, 268282.CrossRefGoogle ScholarPubMed
Botstein, D., Lew, K. K., Jarvik, V. & Swanson, C. A. Jr. (1975). Role of antirepressor in the bipartite control of repression and immunity by bacteriophage P22. Journal of Molecular Biology 91, 439462.CrossRefGoogle ScholarPubMed
Bronson, M. J. & Levine, M. (1971). Virulent mutants of bacteriophage P22. I. Isolation and genetic analysis. Journal of Virology 7, 559568.CrossRefGoogle ScholarPubMed
Dopatka, H. D. & Prell, H. H. (1973). Amber mutants of Salmonella-phage P22 in genes engaged in the establishment of lysogeny. Molecular and General Genetics 120, 157170.CrossRefGoogle ScholarPubMed
Gough, M. (1968) Second locus of bacteriophage P22 necessary for the maintenance of lysogeny. Journal of Virology 2, 992998.CrossRefGoogle ScholarPubMed
Gough, M. & Scott, J. V. (1972) Location of the prophage conversion gene of P22. Virology 50, 603605.CrossRefGoogle ScholarPubMed
Harvey, A. M., Hava, P.Oppenheim, A. B., Prell, H. H. & Soska, J. (1981). Repression of ant synthesis early in the lytic cycle of phage P22. Molecular and General Genetics 181, 7481.CrossRefGoogle ScholarPubMed
Harvey, A. M., Heil, J. & Prell, H. H. (1979). Repressor synthesis in regulatory mutants of bacteriophage P22. Molecular and General Genetics 167, 337339.CrossRefGoogle ScholarPubMed
Kolstad, R. A. & Prell, H. H. (1969). An amber map of Salmonella phage P22. Molecular and General Genetics 104, 339350.CrossRefGoogle Scholar
Levine, M. (1957) Mutations in the temperate phage P22 and lysogeny in Salmonella. Virology 3, 22412.CrossRefGoogle ScholarPubMed
Levine, M., Truesdell, S., Ramakrishnan, T. and Bronson, M. J. (1975). An antirepressor locus and its controlling elements. Journal of Molecular Biology 91, 421438.CrossRefGoogle ScholarPubMed
Prell, H. H. (1970 a). Px, a hybrid between the serological unrelated and heteroimmune Salmonella bacteriophages P22 and Py. I. Some properties of Py and Px, genetic evidence for the hybrid nature of Px and phenotypic mixing between P22, Py and Px. Molecular and General Genetics 108, 167183.CrossRefGoogle Scholar
Prell, H. H. (1970 b). Px, a hybrid between the serological unrelated and heteroimmune Salmonella bacteriophages P22 and Py. II. Contribution of P22 genetic material to different Px variants. Molecular and General Genetics 108, 184202.CrossRefGoogle ScholarPubMed
Prell, H. H. (1973). Regulation of gene expression in Salmonella phage P22. I. Genetic experiments involving P22 and Pxl. Molecular and General Genetics 127, 327339.Google Scholar
Prell, H. H. (1977). The role of ant-product of Salmonella phage P22 in the process of transactivation of prophage Pxl genes. Molecular and General Genetics 156, 6169.CrossRefGoogle Scholar
Rao, R. N. (1968). Bacteriophage P22 controlled exclusion in Salmonella typhimurium. Journal of Molecular Biology 35, 607622.Google ScholarPubMed
Susskind, M. M. (1980). A new gene of bacteriophage P22 which regulates synthesis of antirepressor. Journal of Molecular Biology 138, 685713.CrossRefGoogle ScholarPubMed
Susskind, M. M. and Botstein, D. (1978). Molecular genetics of bacteriophage P22. Microbiology Reviews 42, 385413.Google Scholar
Susskind, M. M., Botstein, D. & Wright, A. (1974). Superinfection exclusion by P22 prophage in lysogens of Salmonella typhimurium. III. Failure of superinfecting phage DNA to enter sieA + lysogens. Virology 62, 350366.CrossRefGoogle ScholarPubMed
Susskind, M. M., Wright, A. & Botstein, D. (1971). Superinfection exclusion by P22 prophage in lysogens of Salmonella typhimurium. II. Genetic evidence for two exclusion systems. Virology 45, 638652.CrossRefGoogle ScholarPubMed
Susskind, M. M. & Youderian, P. (1982) Transcription in vitro of the bacteriophage P22 antirepressor gene. Journal of Molecular Biology 154, 427447.CrossRefGoogle ScholarPubMed
Whitfield, H. J. Jr., Martin, R. G. & Ames, B. N. (1966). Classification of aminotransferase (C gene) mutants in the histidine operon. Journal of Molecular Biology 21, 335355.CrossRefGoogle ScholarPubMed
Youderian, P. & Susskind, M. M. (1980). Bacteriophage P22 proteins specified by the region between genes 9 and erf. Virology 107, 270282.CrossRefGoogle ScholarPubMed
Youderian, P., Chadwick, S. J. & Susskind, M. M. (1982). Autogenous regulation by the bacteriophage P22 arc gene product. Journal of Molecular Biology 154, 449464.CrossRefGoogle ScholarPubMed