Hostname: page-component-848d4c4894-tn8tq Total loading time: 0 Render date: 2024-07-04T22:36:27.608Z Has data issue: false hasContentIssue false

Biochemical genetics of Neurospora nuclease I: Isolation and characterization of nuclease (nuc) mutants

Published online by Cambridge University Press:  14 April 2009

A. M. Forsthoefel
Affiliation:
Department of Biology, University of South Carolina, Columbia, SC 29208, U.S.A.
N. C. Mishra*
Affiliation:
Department of Biology, University of South Carolina, Columbia, SC 29208, U.S.A.
*
* Dr N. C. Mishra, Department of Biology, University of South Carolina, Columbia, SC 29208, U.S.A.

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Isolation and characterization of five new nuclease (nuc) deficient mutants of Neurospora have been described. The new mutants are unable to utilize nucleic acids as the sole phosphorus source and possess growth characteristics similar to those nuc (nuc-1 and nuc-2) mutants described previously. Two new mutants (nuc-4 and nuc-5) were able to use RNA or predigested DNA (but not intact DNA) as phosphorus source and showed temperature sensitive growth at 37 °C. Based on the data from complementation and genetic analyses the five new nuc mutants (nuc-3, nuc-4, nuc-5, nuc-6 and nuc-7) were found nonallelic to each other and to previously described nuc (nuc-1 and nuc-2) mutants; the new nuc mutants mapped to the right of arg-12 on linkage group II. On biochemical analyses, these nuc mutants were found to possess a lower level of extracellular nucleases and alkaline phosphatase as compared to the wild type strain. The ds DNase activity of the new mutants was only about 2–12% of that of the wild type strain; thus, the low level of these extracellular enzymes in the nuc mutants causes their inability to utilize nucleic acids as the sole phosphorus source. Wild type levels of these enzymes were restored in the complementing heterokaryons capable of full growth on the DNA medium. Data from intercrosses, mutagen sensitivity and spontaneous mutation-frequency studies (as discussed in a subsequent paper) indicated the involvement of the nuc genes in DNA repair and recombination.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1983

References

REFERENCES

Barratt, R. W. & Ogata, W. N. (1976). Neurospora stock list eighth revision. Neurospora Newsletter 23, 2990.Google Scholar
Bessey, O. N., Lowry, O. H. & Brock, M. J. (1946). A method for the rapid determination of alkaline phosphatase with cubic millimeter of serum. Journal of Biological Chemistry 164, 321329.CrossRefGoogle ScholarPubMed
Catcheside, D. E. A. (1981). Genes in Neurospora that suppress recombination when they are heterozygous. Genetics 98, 5576.CrossRefGoogle ScholarPubMed
Clark, A. J. & Volkert, M. R. (1978). A new classification of pathways repairing pyrimidine dimer damage in DNA. In DNA Repair Mechanism (ed. Hanawalt, P. C., Friedberg, E. C. and Fox, C. F.), pp. 5772. New York: Academic Press.CrossRefGoogle Scholar
Cox, B. S. & Game, J. (1974). Repair systems in saccharomyces. Mutation Research 26, 237264.CrossRefGoogle ScholarPubMed
Davis, R. H. & DeSerres, F. J. (1970). Genetic and microbiological research techniques for Neurospora crassa. In Methods in Enzymology, vol. 17A (ed. Tabor, A. and Tabor, C.), pp. 79143. New York: Academic Press.Google Scholar
DeLange, A. M. & Mishra, N. C. (1981). The isolation of MMS- and histidine-sensitive mutants in Neurospora crassa. Genetics 97, 247259.CrossRefGoogle ScholarPubMed
DeLange, A. M. & Mishra, N. C. (1982). Characterization of MMS-sensitive mutants of Neurospora. Mutation Research 96, 187199.CrossRefGoogle ScholarPubMed
Fraser, M. J. (1979). Alkaline deoxyribonucleases released from Neurospora crassa mycelium: two activities not released by mutants with multiple sensitivities to mutagens. Nucleic Acids Research 6, 231246.CrossRefGoogle Scholar
Hanawalt, P. C., Cooper, P. K., Ganesan, A. K. & Smith, C. A. (1979). DNA repair in bacteria and mammalian cell. Annual Review of Biochemistry 48, 783836.CrossRefGoogle Scholar
Hasunuma, K. (1973). Repressible extracellular nucleases in Neurospora crassa. Genetics 70, 371384.CrossRefGoogle Scholar
Hasunuma, K. (1977). Control of the production of orthophosphate repressible extracellular enzymes in Neurospora crassa. Genetics 151, 510.Google ScholarPubMed
Hasunuma, K. & Ishikawa, T. (1972). Properties of two nuclease genes in Neurospora crassa. Genetics 70, 371384.CrossRefGoogle ScholarPubMed
Hasunuma, K. & Ishikawa, T. (1977). Control of the production and partial characterization of repressible extracellular 51 nucleotidase and alkaline phosphatase in Neurospora crassa. Biochimica et Biophysica. Acta 486, 178193.CrossRefGoogle Scholar
Hasunuma, K., Toh-e, A. & Ishikawa, T. (1976). Control of formation of extracellular ribonuclease in N. crassa. Biochimica et Biophysica. Acta. 432, 223236.CrossRefGoogle Scholar
Ishikawa, T., Toh-e, A., Uno, I. & Hasunuma, K. (1969). Isolation and characterization of nuclease mutants in Neurospora crassa. Genetics 63, 7592.CrossRefGoogle ScholarPubMed
Kafer, E. & Fraser, M. (1979). Isolation and genetic analysis of nuclease halo (nuh) mutants of Neurospora crassa. Molecular and General Genetics 169, 117127.CrossRefGoogle ScholarPubMed
Kafer, E. (1981). Mutagen sensitivities and mutator effects of MMS-sensitive mutants in Neurospora. Mutation Research 80, 4364.CrossRefGoogle ScholarPubMed
Lehman, J. F., Gleason, M. K., Ahlgren, S. K. & Metzenberg, R. L. (1973). Regulation of phosphate metabolism in Neurospora crassa: characterization of regulatory mutants. Genetics 75, 6173.CrossRefGoogle ScholarPubMed
Lowendorf, H. S., Slayman, C. L., Slayman, C. W. (1974). Phosphate transport in Neurospora. Kinetic characterization of a constitutive low-affinity transport system. Biochimica et Biophysica Acta 373, 369382.CrossRefGoogle ScholarPubMed
Lowendorf, H. S., Bazinet, G. F. & Slayman, C. W. (1975). Phosphate transfer in Neurospora, Biochimica et Biophysica. Acta 413, 95103.Google Scholar
Lowry, H. J., Rosebrough, N. J., Farr, A. L. & Randall, R. L. (1951). Protein measurement with folin phenol reagent. Journal of Biological Chemistry 193, 265275.CrossRefGoogle ScholarPubMed
Malling, H. V. & DeSerres, F. J. (1970). Genetic effects of N-methyl-N-nitro-N-nitrosoguanidine in Neurospora crassa. Molecular and General Genetics 106, 195207.CrossRefGoogle ScholarPubMed
Metzenberg, R. L. & Ahlgren, S. K. (1970). Mutants of Neurospora-deficient in aryl sulfatase. Genetics 64, 409422.CrossRefGoogle ScholarPubMed
Metzenberg, R. L. & Nelson, R. E. (1977). Genetic control of phosphorus metabolism in Neurospora. In Molecular Approach to Eukaryotic Genetic System: ICN- UCLA Symposium on Molecular Biology vol. viii (ed. Wilcox, G., Abelson, J. and Fox, C. F.), pp. 253268. New York: Academic Press.Google Scholar
Mishra, N. C. (1977). Characterization of new osmotic mutants which originated during genetic transformation. Genetical Research 29, 919.CrossRefGoogle ScholarPubMed
Mishra, N. C. (1982). Gene transfer in fungi. Advances in Genetics. Vol. 22 (In the Press.)Google Scholar
Nyc, J. F., Kadner, R. J. & Crocken, B. J. (1966). A repressible alkaline phosphatase in Neurospora crassa. Journal of Biological Chemistry 241, 14681472.CrossRefGoogle ScholarPubMed
Painter, R. B. (1978). Does ultraviolet light enhance post replication repair in mammalian cells? Nature 275, 243245.CrossRefGoogle Scholar
Perkins, D. D. & Bjorkman, M. (1980). Neurospora crassa genetic maps. In Genetic Maps (ed. Brien, J. O.), pp. 160165. Rockville, MD: Bethesda Research Laboratories.Google Scholar
Pettinger, T. (1964). The genetic incidence of pseudo wild types in Neurospora. Genetics 39, 326342.CrossRefGoogle Scholar
Ryan, F. J., Beadle, G. W. & Tatum, E. L. (1943). The trube method of measuring the growth rates of Neurospora. American Journal of Botany 30, 789799.CrossRefGoogle Scholar
Sierakowska, H. & Shugar, D. (1977). Mammalian nucleolytic enzymes. Progress in Nucleic Acid Research and Molecular Biology 20, 59130.CrossRefGoogle ScholarPubMed
Schroeder, A. L. (1975). Genetic control of radiation sensitivity and DNA repair in Neurospora crassa. In Molecular Mechanisms for Repair of DNA, part B (ed. Hanawalt, P. C. and Setlow, R. B.), pp. 567576. New York: Plenum.CrossRefGoogle Scholar
Stahl, F. W. (1980). Genetic Recombination: Thinking about It in Phage and Fungi, pp. 1325. San Francisco: W. H. Freeman.Google Scholar
Stadler, D. & Moyer, R. (1981). Induced repair of genetic damage in Neurospora. Genetics 98, 763773.CrossRefGoogle ScholarPubMed
Threlkeld, S. F. H. (1962). Some asci with non-identical sister spores from a cross in Neurospora crassa. Genetics 47, 11871198.CrossRefGoogle Scholar
Toh-e, A. & Ishikawa, T. (1971). Genetic control of the synthesis of repressible phosphate in Neurospora crassa. Genetics 69, 339451.CrossRefGoogle ScholarPubMed
Westrum, F. M. & Vigfusson, N. V. (1973). A method of MNG mutagenesis of Neurospora Crassa. Neurospora Newsletter 20, 35.Google Scholar
Witkin, E. M. (1976). Ultraviolet mutagenesis and inducible DNA repair in E. coli. Bacteriological Reviews 40, 869907.CrossRefGoogle Scholar