Hostname: page-component-7479d7b7d-8zxtt Total loading time: 0 Render date: 2024-07-13T14:36:27.919Z Has data issue: false hasContentIssue false

Amino acid deprivation and its effect on mating ability in Escherichia coli K12

Published online by Cambridge University Press:  14 April 2009

K. W. Fisher
Affiliation:
Medical Research Council, Microbial Genetics Research Unit, Hammersmith Hospital, London, W. 12

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The conclusion by Suit, Matney, Doudney & Billen (1964) that Hfr donor cells of Escherichia coli K12, starved of required amino acids can mate, has been re-examined. It appears that their conclusion is not valid and that apparent fertility of amino-acid starved cells is due to cross-feeding by the F cells. The relationship of this result to the alternative mechanisms for chromosome transfer in E. coli is discussed.

Type
Short Papers
Copyright
Copyright © Cambridge University Press 1966

References

REFERENCES

Adelberg, E. A., Mandel, M. & Chen, G. C. C. (1965). Optimal conditions for mutagenesis by N-methyl-N'-nitro-N-nitrosoguanidine in E. coli K12. Biochem. biophys. Res. Commun. 18, 788795.CrossRefGoogle Scholar
Bouck, N. & Adelberg, E. A. (1963). The relationship between DNA synthesis and conjugation in Escherichia coli. Biochem. biophys. Res. Commun. 11, 2427.CrossRefGoogle ScholarPubMed
Fisher, K. W. (1966). Mechanically caused damage to Hfr cells of Escherichia coli K12. Genet. Res. 7, 267271.CrossRefGoogle ScholarPubMed
Fulton, C. (1965). Continuous chromosome transfer in Escherichia coli. Genetics, 52, 5574.CrossRefGoogle ScholarPubMed
Goss, W. A., Deitz, W. H. & Cook, T. M. (1965). Mechanism of action of nalidixic acid on E. coli II. J. Bact. 89, 10681074.CrossRefGoogle Scholar
Gross, J. D. & Caro, L. (1966). DNA transfer in bacterial conjugation. J. molec. Biol. 16, 269284.CrossRefGoogle ScholarPubMed
Hayes, W. (1953). The mechanism of genetic recombination in Escherichia coli. Cold Spring Harb. Syrup, quant. Biol. 18, 7593.CrossRefGoogle ScholarPubMed
Hollom, S. & Pritchard, R. H. (1965). Effect of inhibition of DNA synthesis on mating in Escherichia coli K12. Genet. Res. 6, 479483.CrossRefGoogle ScholarPubMed
Jacob, F. & Brenner, S. (1963). Transfert de caraetères génétiques par incorporation au facteur sexuel d'Escherichia coli. C.r. hebd. Séanc. Acad. Sci., Paris, 256, 298300.Google Scholar
Krisch, R. E. & Kvetkas, M. J. (1966). Inhibition of bacterial mating by amino acid deprivation. Biochem. biophys. Res. Commun. 22, 707711.CrossRefGoogle ScholarPubMed
Lark, K. G., Repko, T. & Hoffman, E. (1963). The effect of amino acid deprivation on subsequent deoxyribonucleic acid replication. Biochim. biophys. Acta, 76, 924.CrossRefGoogle ScholarPubMed
Nagata, T. (1963). The molecular synchrony and sequential replication of DNA in Escherichia coli. Proc. natn. Acad. Sci. U.S.A. 44, 551559.CrossRefGoogle Scholar
Pritchard, R. H. & Lark, K. G. (1964). Induction of replication by thymine starvation at the chromosome origin in Escherichia coli. J. molec. Biol. 9, 288307.CrossRefGoogle ScholarPubMed
Ptashne, M. (1965). Replication and host modification of DNA transferred during bacterial mating. J. molec. Biol. 11, 829838.CrossRefGoogle ScholarPubMed
Suit, J. C., Matney, T. S., Doudney, C. O. & Billen, D. (1964). Transfer of the Escherichia coli K12 chromosome in the absence of DNA synthesis. Biochem. biophys. Res. Commun. 17, 237241.CrossRefGoogle ScholarPubMed