Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-25T10:23:00.924Z Has data issue: false hasContentIssue false

Resource use and GHG emissions of eight tropical fruitspecies cultivated in Colombia

Published online by Cambridge University Press:  10 July 2013

Sophie Graefe*
Affiliation:
Int. Cent. Trop. Agric. (CIAT), Recta Cali-Palmira km 17, Cali, Colombia Present address: Georg-August-Univ. Göttingen, Trop. Silvic. For. Ecol., Büsgenweg 1, 37077 Göttingen, Germ.. sgraefe@gwdg.de
Jeimar Tapasco
Affiliation:
Int. Cent. Trop. Agric. (CIAT), Recta Cali-Palmira km 17, Cali, Colombia
Alonso Gonzalez
Affiliation:
Int. Cent. Trop. Agric. (CIAT), Recta Cali-Palmira km 17, Cali, Colombia
*
* Correspondence and reprints
Get access

Abstract

Introduction. The cultivation of high-value fruit species is a profitable agricultural activity in many tropical countries; however, intensive fruit cultivation may depend on high amounts of external inputs. The objective of our study was to quantify and compare the resource use during the cultivation of eight tropical fruit species (Rubus glaucus, Solanum quitoense, Passiflora edulis, Cyphomandra betacea, Physalis peruviana, Ananas comosus, Persea americana and Mangifera indica) commonly cultivated in Colombia. It further aimed to identify greenhouse gas (GHG) emissions in the selected production systems and to highlight the potential to contribute to climate change mitigation efforts. Materials and methods. The analysis was based on data from agricultural databases and applied a life-cycle assessment with energy use and GHG emissions as impact categories. Furthermore, economic indicators were taken into account with the aim of integrating the environmental and economic goals of production systems. Results and discussion. Among the eight fruit species studied, mango (Mangifera indica) was found to have the lowest and tree tomato (Cyphomandra betacea) the highest emission profile. The variability in resource use among growers of the same species was high, indicating the need to improve management abilities at the farm level. Mineral fertilizer production was the highest contributor to GHG emissions. GHG- and energy-efficient management alternatives would have a high potential to reduce the carbon footprint of fruit cultivation.

Type
Original article
Copyright
© 2013 Cirad/EDP Sciences

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Tafur R., Propuesta frutícola para Colombia y su impacto en la actividad económica nacional, regional y departamental, in: Fisher G., Miranda D., Piedrahíta W., Magnitskiy S. (Eds.), Congr. Colomb. Hortic., Soc. Colomb. Cienc. Hortíc. (SCCH), Mem., Bogotá, Colombia, 2006, pp. 47–66.
Anon., Anuario estadístico de frutas y hortalizas 2004–2008, Minist. Agric. Desarro. Rural (MADR), Bogota, Colombia, 2009.
Lal, R., Carbon emissions from farm operations, Environ. Int. 30 (2004) 981990.CrossRefGoogle ScholarPubMed
Brentrup, F., Küsters, J., Lammel, J., Kuhlmann, H., Methods to estimate on-field nitrogen emissions from crop production as an input to LCA studies in the agricultural sector, Int. J. Life Cycle Assess. 5 (2000) 349357.CrossRefGoogle Scholar
Anon., Climate change 2007: The physical science basis, Contrib. Work. Group I 4th Assess. Rep. Intergov. Panel Clim. Chang. (IPCC), Camb. Univ. Press, Camb., U.K., 2007.
Smith, P., Martino, D., Cai, Z., Gwary, D., Janzen, H., Kumar, P., McCarl, B., Ogle, S., O’Mara, F., Rice, C., Scholes, B., Sirotenko, O., Howden, M., McAllister, T., Pan, G., Romanenkov, V., Schneider, U., Towprayoon, S., Policy and technological constraints to implementation of greenhouse gas mitigation options in agriculture, Agr. Ecosyst. Environ. 118 (2007) 628.CrossRefGoogle Scholar
Anon., FAO profile for climate change, Food Agric. Organ. U. N. (FAO), Rome, Italy, 2009.
Glantz M.H., Gommes R, Ramasamy S., Coping with a changing climate: considerations for adaptation and mitigation in agriculture, FAO, Environ. Natural Res. Manag. Ser. 15, Rome, Italy, 2009.
Mrini, M., Senhaji, F., Pimentel, D., Energy analysis of sugar beet production under traditional and intensive farming systems and impacts on sustainable agriculture in Morocco, J. Sustain. Agric. 20 (2002) 528.CrossRefGoogle Scholar
Ramjeawon, T., Life cycle assessment of cane-sugar on the island of Mauritius, Int. J. Life Cycle Assess. 9 (2004) 254260.CrossRefGoogle Scholar
Harris S., Narayanaswamy V., A literature review of life cycle assessment in agriculture, Aust. Gov., Rural Ind. Res. Dev. Corp. (RIRDC), RIRDC Publ. No 09/029, Canberra, Aust., 2009.
Clay, J., Freeze the footprint of food, Nature 475 (2011) 287289.CrossRefGoogle ScholarPubMed
Coltro, L., Mourad, A.L., Kletecke, R.M., Mendonça, T.A., Germer, S.P.M., Assessing the environmental profile of orange production in Brazil, Int. J. Life Cycle Assess. 14 (2009) 656664.CrossRefGoogle Scholar
Coltro, L., Mourad, A.L., Oliveira, P., Baddini, J.P., Kletecke, R.M., Environmental profile of Brazilian green coffee, Int. J. Life Cycle Assess. 11 (2006) 1621.CrossRefGoogle Scholar
Mouron, P., Scholz, R.W., Nemecek, T., Weber, O., Life cycle management on Swiss fruit farms: Relating environmental and income indicators for apple-growing, Ecol. Econ. 58 (2006) 561578.CrossRefGoogle Scholar
Bojacá,, C.R., Schrevens,, E., Energy assessment of peri-urban horticulture and its uncertainty: Case study for Bogota, Colombia, Energy 35 (2010) 21092119.CrossRefGoogle Scholar
Ozkan, B., Kurklu, A., Akcaoz, H., An input-output analysis in greenhouse vegetable production: a case study for Antalya region of Turkey, Biomass Bioenerg. 26 (2004) 8995.CrossRefGoogle Scholar
Yilmaz, I., Akcaoz, H., Ozkan, B., An analysis of energy use and input costs for cotton production in Turkey, Renew. Energ. 30 (2004) 145155.CrossRefGoogle Scholar
Plassmann, K., Norton, A., Attarzadeh, N., Jensen, M.P., Brenton, P., Edwards-Jones, G., Methodological complexities of product carbon footprinting: a sensitivity analysis of key variables in a developing country context, Environ. Sci. Technol. 13 (2010) 393404.Google Scholar
Renouf, M.A., Wegener, M.K., Pagan, R.J., Life cycle assessment of Australian sugarcane production with a focus on sugarcane growing, Int. J. Life Cycle Assess. 15 (2010) 927937.CrossRefGoogle Scholar
Montagnini, F., Nair, P.K.R., Carbon sequestration: An underexploited environmental benefit of agroforestry systems, Agroforest. Syst. 61 (2004) 281295.Google Scholar
Shively, G.E., Zelek, C.A., Midmore, D.J., Nissen, T.M., Carbon sequestration in a tropical landscape, Agrofor. Syst. 60 (2004) 189197.CrossRefGoogle Scholar
Sanchez, P.A., Buresh, R.J., Leakey, R.R.B., Trees, soils, and food security, Philos. Trans. R. Soc. Lond., Ser. B. 353 (1997) 949961.Google Scholar
Albrecht, A., Kandji, S.T., Carbon sequestration in tropical agroforestry systems, Agric. Ecosyst. Environ. 99 (2003) 1527.CrossRefGoogle Scholar
Ordóñez, J.A.B., de Jong, B.H.J., García-Oliva, F., Aviña, F.L., Pérez, J.V., Guerrero, G., Martínez, R., Masera, O., Carbon content in vegetation, litter, and soil under 10 different land-use and land-cover classes in the Central Highlands of Michoacan, Mexico, For. Ecol. Manag. 255 (2008) 20742084.CrossRefGoogle Scholar
Brenton, P., Edwards-Jones, G., Jensen, M.F., Carbon labeling and low-income country exports: A review of the development issues, Dev. Policy Rev. 27 (2009) 243267.CrossRefGoogle Scholar
Niggli U., Fließbach A., Hepperly P., Scialabba N., Low greenhouse gas agriculture: Mitigation and adaptation potential of sustainable farming systems, FAO, Rome, Italy, 2009.
Müller-Wenk, R., Brandão, M., Climatic impact of land use in LCA - carbon transfers between vegetation/soil and air, Int. J. Life Cycle Assess. 15 (2010) 172182.CrossRefGoogle Scholar
Crews, T.E., Peoples, M.B., Legume versus fertilizer sources of nitrogen: ecological tradeoffs and human needs, Agric. Ecosyst. Environ. 102 (2004) 279297.CrossRefGoogle Scholar
Gellings C.W., Parmenter K.E., Energy efficiency in fertilizer production and use, in: Gellings C.W., Blok K. (Eds.), Efficient use and conservation of energy, Encyclopedia of life support systems (EOLSS), Eolss Publ., Oxf., U.K., 2004.
Stout B.A., Handbook of energy for world agriculture, Elsevier Appl. Sci., Lond., U.K., 1990.
Pimentel D., Handbook of energy utilization in agriculture, CRC Press, Boca Raton, U.S.A., 1980.
Bouwman A.F., Compilation of a global inventory of emissions of nitrous oxide, Univ. Wagening., Thesis, Wagening., Neth., 1995, 143 p.