Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-27T13:10:10.934Z Has data issue: false hasContentIssue false

Changes in phenolic composition, ascorbic acid andantioxidant capacity in cashew apple (Anacardium occidentale L.)during ripening

Published online by Cambridge University Press:  16 July 2012

André Gordon
Affiliation:
Univ. Bonn, Dep. Nutr. Food Sci., Endenicher Allee 11-13, 53115 Bonn, Germany. f.marx@uni-bonn.de
Mirko Friedrich
Affiliation:
Univ. Bonn, Dep. Nutr. Food Sci., Endenicher Allee 11-13, 53115 Bonn, Germany. f.marx@uni-bonn.de
Virgínia Martins da Matta
Affiliation:
Embrapa Food Technol., Av. das Américas POB 29.501, 23020-470 Rio de Janeiro, Brazil
Carlos Farley Herbster Moura
Affiliation:
Embrapa Trop. Agroind., Rua Dra. Sara Mesquita, 2270, Pici, 60511-110 Fortaleza, Brazil
Friedhelm Marx*
Affiliation:
Univ. Bonn, Dep. Nutr. Food Sci., Endenicher Allee 11-13, 53115 Bonn, Germany. f.marx@uni-bonn.de
*
* Correspondence and reprints
Get access

Abstract

Introduction. Cashew apple is a rich source of sugars, vitamin C and polyphenols. In spite of its nutritional value, this pseudo-fruit has been left unexploited to a large extent in the crop-growing areas. Some reports of the chemical characteristics of cashew apple have been published. However, nothing is known about the changes in the composition of its bioactive compounds in the course of ripening. Materials and methods. Cashew apples at three different maturity stages were examined with respect to their ascorbic acid content, phenolic compounds and antioxidant capacity. Ascorbic acid was quantified by HPLC. Phenolic compounds were identified and quantified by using HPLC-ESI-MS/MS by comparison with authentic standard compounds. The antioxidant capacity was measured by TOSC assay against peroxyl radicals and peroxynitrite. Results. Amounts of identified phenolic compounds were the highest in unripe cashew apple and decreased in the course of ripening. Myricetin 3-O-rhamnoside, quercetin 3-O-galactoside and quercetin 3-O-rhamnoside turned out to be the main flavonoids in all maturity stages. The antioxidant capacity and the concentration of ascorbic acid increased in the course of ripening. The antioxidant activity was considerably influenced by ascorbic acid, more than by the content of phenolic compounds. Conclusion. This study provides, for the first time, information on changes in bioactive compounds and the antioxidant capacity in cashew apple during ripening. A dietary or technological exploitation of ascorbic acid is useful in the ripe condition. The unripe pseudo-fruits are a good source for the extraction of polyphenols with regard to possible food technological purposes or the preparation of food supplements.

Type
Original article
Copyright
© 2012 Cirad/EDP Sciences

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anon., Food and fruit-bearing forest species. 3: Examples from Latin America, FAO For. Pap. 44/3, FAO, Rome, Italy, 1986.
Michodjehoun-Mestres, L., Souquet, J.-M., Fulcrand, H., Bouchut, C., Reynes, M., Brillouet, J.-M., Monomeric phenols of cashew apple (Anacardium occidentale L.), Food Chem. 112 (2009) 851857.CrossRefGoogle Scholar
Akinwale, T.O., Cashew apple juice: its use in fortifying the nutritional quality of some tropical fruits, Eur. Food Res. Technol. 211 (2000) 205207.CrossRefGoogle Scholar
Garruti D.S., Facundo H.V.V., Souza Neto M.A., Wagner R., Changes in the key odour-active compounds and sensory profile of cashew apple juice during process, in: Blank I., Wüst M., Yeretzian C. (Eds.), Expression of multidisciplinary flavour science, Zürcher Hochsch. Angew. Wiss., Winterthur, Switz., 2010, pp. 215–218.
Campos, D.C.P., Santos, A.S., Wolkoff, D.B., Matta, V.M., Cabral, L.M.C., Couri, S., Cashew apple juice stabilization by microfiltration, Desalination 148 (2002) 6165.CrossRefGoogle Scholar
Melo Cavalcante, A.A., Rubesam, G., Picada, J.N., Silva, E.G. da, Moreira, J.C.F., Henriques, J.A.P., Mutagenicity, antioxidant potential, and antimutagenic activity against hydrogen peroxide of cashew (Anacardium occidentale) apple juice and cajuina, Environ. Mol. Mutagen. 41 (2003) 360369.CrossRefGoogle ScholarPubMed
Gollucke, A.P.B., Recent applications of grape polyphenols in foods, beverages and supplements, Recent Pat. Food Nutr. Agric. 2 (2010) 105109.CrossRefGoogle ScholarPubMed
Xia, E.-Q., Deng, G.-F., Guo, Y.-J., Li, H.-B., Biological activities of polyphenols from grapes, Int. J. Mol. Sci. 11 (2010) 622646.CrossRefGoogle ScholarPubMed
El-Hela, A., Abdullah, A., Antioxidant and antimicrobial activities of methanol extracts of some Verbena species: in vitro evaluation of antioxidant and antimicrobial activity in relation to polyphenolic content, J. Appl. Sci. Res. 6 (2010) 683689.Google Scholar
Jalosinska, M., Wilczak, J., Influence of plant extracts on the microbiological shelf life of meat products, Pol. J. Food Nutr. Sci. 59 (2009) 303308.Google Scholar
Lee, S.K., Kader, A.A., Preharvest and postharvest factors influencing vitamin C content of horticultural crops, Postharvest Biol. Technol. 20 (2000) 207220. CrossRefGoogle Scholar
Beitollahi, H., Ardakani, M. M., Naeimi, H., Ganjipour, B., Electrochemical characterization of 2,2’-[1,2-ethanediylbis(nitriloethylidyne)]-bis-hydrochinone-carbon nanotube paste electrode and its application to simultaneous voltammetric determination of ascorbic acid and uric acid, J. Solid State Electrochem. 13 (2009) 353363.CrossRefGoogle Scholar
Figueiredo R.W., Qualidade e bioquímica de parede celular durante o desenvolvimento, maturação e armazenamento de pedúnculos de cajueiro anão precoce CCP 76 submetidos à aplicação pós-colheita de calico, Fac. Ciênc. Farm., Univ. São Paulo, thesis, São Paulo, Brazil, 2000.
Papagiannopoulos, M., Wollseifen, H.R., Mellenthin, A., Haber, B., Galensa, R., Identification and quantification of polyphenols in carob fruits (Ceratonia siliqua L.) and derived products by HPLC-UV-ESI/MSn, J. Agric. Food Chem. 52 (2004) 37843791. CrossRefGoogle ScholarPubMed
Gordon, A., Schadow, B., Quijano, C. E., Marx, F., Chemical characterization and antioxidant capacity of berries from Clidemia rubra (Aubl.) Mart. (Melastomataceae), Food Res. Int. 44 (2011) 21202127.CrossRefGoogle Scholar
Lichtenthäler, R., Marx, F., Kind, O.M., Determination of antioxidative capacities using an enhanced total oxidant scavenging capacity (TOSC) assay, Eur. Food Res. Technol. 216 (2003) 166173.CrossRefGoogle Scholar
Assunção, R.B., Mercadante, A.Z., Carotenoids and ascorbic acid from cashew apple (Anacardium occidentale L.) variety and geographic effects, Food Chem. 81 (2003) 495502. CrossRefGoogle Scholar
Souci S.W., Fachmann W., Kraut H., Food composition and nutrition tables (7th ed.), Medpharm Sci. Publ., Stuttg., Ger., 2008.
Mercado-Silva, E., Benito-Bautista, P., Angeles García-Velasco M. de los, Fruit development, harvest index and ripening changes of guavas produced in central Mexico, Postharvest Biol. Technol. 13 (1998) 143150.CrossRefGoogle Scholar
Celik, H., Özgen, M., Serc, S., Kaya, C., Phytochemical accumulation and antioxidant capacity at four maturity stages of cranberry fruit, Sci. Hortic. 117 (2008) 345348. CrossRefGoogle Scholar
Castillo, J., Benavente, O., Rio, J. A. del, Naringin and neohesperidin levels during development of leaves, flower buds, and fruits of Citrus aurantium, Plant Physiol. 99 (1992) 6773.CrossRefGoogle ScholarPubMed
Dragovic-Uzelac, V., Levaj, B., Mrkic, V., Bursac, D., Boras, M., The content of polyphenols and carotenoids in three apricot cultivars depending on stage of maturity and geographical region, Food Chem. 102 (2007) 966975.CrossRefGoogle Scholar
Awad, M.A., Jager, A. de, Plas, L.H.W. van der, Krol, A.R. van der, Flavonoid and chlorogenic acid changes in skin of ‘Elstar’ and ‘Jonagold’ apples during development and ripening, Sci. Hortic. 90 (2001) 6983.CrossRefGoogle Scholar
Li, Z., Sugaya, S., Gemma, H., Iwahori, S., Flavonoid biosynthesis and accumulation and related enzyme activities in the skin of ‘Fuji‘ and ‘Oorin‘ apples during their development, J. Jap. Soc. Hortic. Sci. 71 (2002) 317321.CrossRefGoogle Scholar
Chirinos, R., Galarza, J., Betallelez-Pallardel, I., Pedreschi, R., Campos, D., Antioxidant compounds and antioxidant capacity of Peruvian camu camu (Myrciaria dubia (H.B.K.) McVaugh) fruit at different maturity stages, Food Chem. 120 (2010) 10191024.CrossRefGoogle Scholar
Almeida, J.R.M., D’Amico, E., Preuss, A., Carbone, F., Vos, C.H.R. de, Deiml, B., Mourgues, F., Perrotta, G., Fischer, T.C., Bovy, A.G., Martens, S., Rosati, C., Characterization of major enzymes and genes involved in flavonoid and proanthocyanidin biosynthesis during fruit development in strawberry (Fragaria × ananassa), Arch. Biochem. Biophys. 465 (2007) 6171.CrossRefGoogle Scholar
Gruz, J., Ayaz, F.A., Torun, H., Strnad, M., Phenolic acid content and radical scavenging activity of extracts from medlar (Mespilus germanica L.) fruit at different stages of ripening, Food Chem. 124 (2011) 271277.CrossRefGoogle Scholar
Brito, E. S. de, Araújo, M.C.P. de, Long-Ze, L., Harnly, J., Determination of the flavonoid components of cashew apple (Anarcadium occidentale) by LC-DAD-ESI/MS, Food Chem. 105 (2007) 11121118.Google Scholar
Lichtenthäler, R., Rodrigues, R.B., Maia, J.G.S., Papagiannopoulos, M., Fabricius, H., Marx, F., Total oxidant scavenging capacities of Euterpe oleracea Mart. (açaí) fruits, Int. J. Food Sci. Nutr. 56 (2005) 5364.CrossRefGoogle Scholar