Skip to main content Accessibility help
×
Home
Hostname: page-component-747cfc64b6-4xs5l Total loading time: 0.203 Render date: 2021-06-15T17:32:27.816Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true }

Raising the level for $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}\text {GL}_{{n}}$

Published online by Cambridge University Press:  10 June 2014

JACK A. THORNE
Affiliation:
Department of Mathematics, Harvard University, 1 Oxford Street, Cambridge, MA 02138, USA; thorne@math.harvard.edu
Corresponding
E-mail address:

Abstract

We prove a simple level-raising result for regular algebraic, conjugate self-dual automorphic forms on $\mathrm{GL}_n$ . This gives a systematic way to construct irreducible Galois representations whose residual representation is reducible.

Type
Research Article
Creative Commons
Creative Common License - CCCreative Common License - BY
The online version of this article is published within an Open Access environment subject to the conditions of the Creative Commons Attribution licence <http://creativecommons.org/licenses/by/3.0/>.
Copyright
© The Author 2014

References

Bellaïche, J. and Graftieaux, P., ‘Augmentation du niveau pour U(3)’, Amer. J. Math. 128 (2) (2006), 271309.CrossRefGoogle Scholar
Barnet-Lamb, T., Gee, T., Geraghty, D. and Taylor, R., ‘Potential automorphy and change of weight’, Ann. of Math. 179 (2) (2014), 501609.CrossRefGoogle Scholar
Borel, A. and Wallach, N., Continuous cohomology, discrete subgroups, and representations of reductive groups, second edition, Mathematical Surveys and Monographs, 67 (American Mathematical Society, Providence, RI, 2000).CrossRefGoogle Scholar
Caraiani, A., ‘Local–global compatibility and the action of monodromy on nearby cycles’, Duke Math. J. 161 (12) (2012), 23112413.CrossRefGoogle Scholar
Clozel, L., Harris, M. and Taylor, R., ‘Automorphy for some l-adic lifts of automorphic mod l Galois representations’, Publ. Math. Inst. Hautes Études Sci. (108) (2008), 1181. With Appendix A, summarizing unpublished work of Russ Mann, and Appendix B by Marie-France Vignéras.CrossRefGoogle Scholar
Clozel, L. and Thorne, J. A., ‘Level-raising and symmetric power functoriality, I’, Compos. Math. 150 (05) , 729–748.Google Scholar
Clozel, L. and Thorne, J. A., ‘Level-raising and symmetric power functoriality, II’, Ann. of Math. (to appear).Google Scholar
Gee, T., ‘Automorphic lifts of prescribed types’, Math. Ann. 350 (1) (2011), 107144.CrossRefGoogle Scholar
Geraghty, D., ‘Modularity lifting theorems for ordinary Galois representations’, Preprint.Google Scholar
Gross, B. H., ‘Algebraic modular forms’, Israel J. Math. 113 (1999), 6193.CrossRefGoogle Scholar
Gross, B. H., ‘Some remarks on signs in functional equations’, Ramanujan J. 7 (1–3) (2003), 9193. Rankin memorial issues.CrossRefGoogle Scholar
Guerberoff, L., ‘Modularity lifting theorems for Galois representations of unitary type’, Compos. Math. 147 (2011), 10221058.CrossRefGoogle Scholar
Harris, M., ‘The Taylor–Wiles method for coherent cohomology’, J. Reine Angew. Math. 679 (2013), 125153.Google Scholar
Henniart, G., ‘Une caractérisation de la correspondance de Langlands locale pour GL(n)’, Bull. Soc. Math. France 130 (4) (2002), 587602.CrossRefGoogle Scholar
Harris, M. and Taylor, R., The geometry and cohomology of some simple shimura varieties, Annals of Mathematics Studies, 151 (Princeton University Press, Princeton, NJ, 2001), With an appendix by Vladimir G. Berkovich.Google Scholar
Ito, T., ‘Weight-monodromy conjecture for p-adically uniformized varieties’, Invent. Math. 159 (3) (2005), 607656.CrossRefGoogle Scholar
Labesse, J.-P., ‘Changement de base CM et séries discrètes’, in:Stab Trace Formula Shimura Var Arith Appl. vol. 1 (Int Press, Somerville, MA, 2011), 429470.Google Scholar
Mok, C. P., ‘Endoscopic classification of representations of quasi-split unitary groups’, Memoirs of the AMS (to appear).Google Scholar
Lazarus, X., ‘Module universel non ramifié pour un groupe réductif $p$ -adique’, PhD thesis, L’Université Paris XI Orsay, March 2000.Google Scholar
Lan, K.-W. and Suh, J., ‘Vanishing theorems for torsion automorphic sheaves on compact PEL-type shimura varieties’, Duke Math. J. 161 (6) (2012), 11131170.CrossRefGoogle Scholar
Mustafin, G. A., ‘Non-Archimedean uniformization’, Mat. Sb. (N.S.) 105 (147, 2) (1978), 207237, 287.Google Scholar
Orlik, S., ‘On extensions of generalized steinberg representations’, J. Algebra 293 (2) (2005), 611630.CrossRefGoogle Scholar
Ribet, K. A., ‘Congruence relations between modular forms’, in:Proceedings of the International Congress of Mathematicians, vol. 1, 2 (Warsaw, 1983) (PWN, Warsaw, 1984), 503514.Google Scholar
Rapoport, M. and Zink, Th., Period spaces for p-divisible groups, Annals of Mathematics Studies, 141 (Princeton University Press, Princeton, NJ, 1996).Google Scholar
Saito, Takeshi, ‘Weight spectral sequences and independence of l ’, J. Inst. Math. Jussieu 2 (4) (2003), 583634.CrossRefGoogle Scholar
Shin, S. W., ‘Supercuspidal part of the mod $l$ cohomology of $\mathrm{GU}(1,n-1)$ -Shimura varieties’, J. Reine Angew Math. (to appear).Google Scholar
Tate, J., ‘Number theoretic background’, in:Automorphic forms, representations andL-functions, Proc. Sympos. Pure Math. (Oregon State University, Corvallis, OR, 1977), Part 2, Proc. Sympos. Pure Math. XXXIII (Amer. Math. Soc., Providence, RI, 1979), 326.CrossRefGoogle Scholar
Taylor, R., ‘Automorphy for some l-adic lifts of automorphic mod l Galois representations II’, Publ. Math. Inst. Hautes Études Sci. 108 (2008), 183239.CrossRefGoogle Scholar
Thorne, J. A., ‘Automorphy lifting theorems for residually reducible $l$ -adic Galois representations’, J. AMS, Preprint.Google Scholar
Taylor, R. and Yoshida, T., ‘Compatibility of local and global Langlands correspondences’, J. Amer. Math. Soc. 20 (2) (2007), 467493.CrossRefGoogle Scholar
Vignéras, M.-F., ‘Banal characteristic for reductive p-adic groups’, J. Number Theory 47 (3) (1994), 378397.CrossRefGoogle Scholar
Zelevinsky, A. V., ‘Induced representations of reductive p-adic groups II on irreducible representations of GL(n)’, Ann. Sci. École Norm. Sup. (4) 13 (2) (1980), 165210.CrossRefGoogle Scholar
You have Access
Open access
7
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Raising the level for $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}\text {GL}_{{n}}$
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Raising the level for $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}\text {GL}_{{n}}$
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Raising the level for $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}\text {GL}_{{n}}$
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *