Skip to main content Accessibility help
×
Home
Hostname: page-component-99c86f546-t82dr Total loading time: 0.211 Render date: 2021-11-28T23:09:40.658Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

POINTWISE CONVERGENCE OF SCHRÖDINGER SOLUTIONS AND MULTILINEAR REFINED STRICHARTZ ESTIMATES

Published online by Cambridge University Press:  13 August 2018

XIUMIN DU
Affiliation:
Institute for Advanced Study, Princeton, NJ, USA; xdu@math.ias.edu
LARRY GUTH
Affiliation:
Massachusetts Institute of Technology, Cambridge, MA, USA; lguth@math.mit.edu
XIAOCHUN LI
Affiliation:
University of Illinois at Urbana-Champaign, Urbana, IL, USA; xcli@math.uiuc.edu
RUIXIANG ZHANG
Affiliation:
Institute for Advanced Study, Princeton, NJ; rzhang@math.ias.edu

Abstract

HTML view is not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We obtain partial improvement toward the pointwise convergence problem of Schrödinger solutions, in the general setting of fractal measure. In particular, we show that, for $n\geqslant 3$, $\lim _{t\rightarrow 0}e^{it\unicode[STIX]{x1D6E5}}f(x)$$=f(x)$ almost everywhere with respect to Lebesgue measure for all $f\in H^{s}(\mathbb{R}^{n})$ provided that $s>(n+1)/2(n+2)$. The proof uses linear refined Strichartz estimates. We also prove a multilinear refined Strichartz using decoupling and multilinear Kakeya.

MSC classification

Type
Research Article
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.
Copyright
© The Author(s) 2018

References

Barceló, J. A., Bennett, J., Carbery, A. and Rogers, K. M., ‘On the dimension of divergence sets of dispersive equations’, Math. Ann. 349 (2011), 599622.CrossRefGoogle Scholar
Bennett, J., Carbery, A. and Tao, T., ‘On the multilinear restriction and Kakeya conjectures’, Acta Math. 196 (2006), 261302.CrossRefGoogle Scholar
Bourgain, J., ‘On the Schrödinger maximal function in higher dimension’, Proc. Steklov Inst. Math. 2013 280, 4660.CrossRefGoogle Scholar
Bourgain, J., ‘A note on the Schrödinger maximal function’, J. Anal. Math. 130 (2016), 393396.CrossRefGoogle Scholar
Bourgain, J. and Demeter, C., ‘The proof of the l 2 decoupling conjecture’, Ann. of Math. (2) 182(1) (2015), 351389.CrossRefGoogle Scholar
Carleson, L., ‘Some analytic problems related to statistical mechanics’, inEuclidean Harmonic Analysis (Proc. Sem., Univ. Maryland, College Park, MD, 1979), Lecture Notes in Mathematics, 779 (Springer, Berlin, 1980), 545.CrossRefGoogle Scholar
Dahlberg, B. E. J. and Kenig, C. E., ‘A note on the almost everywhere behavior of solutions to the Schrödinger equation’, inHarmonic Analysis (Minneapolis, MN, 1981), Lecture Notes in Mathematics, 908 (Springer, Berlin–New York, 1982), 205209.CrossRefGoogle Scholar
Du, X., Guth, L. and Li, X., ‘A sharp Schrödinger maximal estimate in ℝ2 ’, Ann. of Math. (2) 186 (2017), 607640.CrossRefGoogle Scholar
Du, X., Guth, L., Ou, Y., Wang, H., Wilson, B. and Zhang, R., ‘Weighted restriction estimates and application to Falconer distance set problem’, Preprint, 2018, arXiv:1802.10186.Google Scholar
Guth, L., ‘A short proof of the multilinear Kakeya inequality’, Math. Proc. Cambridge Philos. Soc. 158(1) (2015), 147153.CrossRefGoogle Scholar
Guth, L., ‘A restriction estimate using polynomial partitioning’, J. Amer. Math. Soc. 29(2) (2016), 371413.CrossRefGoogle Scholar
Guth, L., ‘Restriction estimates using polynomial partitioning II’, Preprint, 2016, arXiv:1603.04250.Google Scholar
Lee, S., ‘On pointwise convergence of the solutions to Schrödinger equations in ℝ2 ’, Int. Math. Res. Not. IMRN 2006 32597 (2006), 121.Google Scholar
Lucà, R. and Rogers, K., ‘Average decay for the Fourier transform of measures with applications’, J. Eur. Math. Soc. (2016), (to appear).Google Scholar
Lucà, R. and Rogers, K., ‘Coherence on fractals versus convergence for the Schrödinger equation’, Comm. Math. Phys. 351 (2017), 341359.CrossRefGoogle Scholar
Lucà, R. and Rogers, K., ‘A note on pointwise convergence for the Schrödinger equation’, Preprint, 2017, arXiv:1703.01360.Google Scholar
Sjögren, P. and Sjölin, P., ‘Convergence properties for the time-dependent Schrödinger equation’, Ann. Acad. Sci. Fenn. 14(1) (1989), 1325.Google Scholar
Žubrinić, D., ‘Singular sets of Sobolev functions’, C. R. Math. Acad. Sci. Paris 334 (2002), 539544.CrossRefGoogle Scholar
You have Access
Open access
11
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

POINTWISE CONVERGENCE OF SCHRÖDINGER SOLUTIONS AND MULTILINEAR REFINED STRICHARTZ ESTIMATES
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

POINTWISE CONVERGENCE OF SCHRÖDINGER SOLUTIONS AND MULTILINEAR REFINED STRICHARTZ ESTIMATES
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

POINTWISE CONVERGENCE OF SCHRÖDINGER SOLUTIONS AND MULTILINEAR REFINED STRICHARTZ ESTIMATES
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *