Skip to main content Accessibility help
×
Home
Hostname: page-component-99c86f546-swqlm Total loading time: 0.493 Render date: 2021-12-03T01:13:52.012Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Modularity lifting results in parallel weight one and applications to the Artin conjecture: the tamely ramified case

Published online by Cambridge University Press:  10 July 2014

PAYMAN L. KASSAEI
Affiliation:
Department of Mathematics and Statistics, McGill University, 805 Sherbrooke St. W., Montreal H3A 0B9, QC, Canada; kassaei@math.mcgill.ca
SHU SASAKI
Affiliation:
Fakultat fur Mathematik, Universitat Duisburg-Essen, Thea-Leymann-Strasse 9, 45127 Essen, Germany; s.sasaki.03@cantabgold.net
YICHAO TIAN
Affiliation:
Morningside Center of Mathematics, Chinese Academy of Sciences, 55 Zhong Guan Cun East Road, Beijing, 100190, China; yichaot@math.ac.cn

Abstract

HTML view is not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We extend the modularity lifting result of P. Kassaei (‘Modularity lifting in parallel weight one’,J. Amer. Math. Soc. 26 (1) (2013), 199–225) to allow Galois representations with some ramification at $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}p$ . We also prove modularity mod 5 of certain Galois representations. We use these results to prove new cases of the strong Artin conjecture over totally real fields in which 5 is unramified. As an ingredient of the proof, we provide a general result on the automatic analytic continuation of overconvergent $p$ -adic Hilbert modular forms of finite slope which substantially generalizes a similar result in P. Kassaei (‘Modularity lifting in parallel weight one’, J. Amer. Math. Soc. 26 (1) (2013), 199–225).

Type
Research Article
Creative Commons
Creative Common License - CCCreative Common License - BY
The online version of this article is published within an Open Access environment subject to the conditions of the Creative Commons Attribution licence <http://creativecommons.org/licenses/by/3.0/>.
Copyright
© The Author(s) 2014

References

Andreatta, F. and Goren, E., ‘Hilbert modular forms: mod p and p-adic aspects’, Mem. Amer. Math. Soc. 173 (2005).Google Scholar
Abbes, A. and Saito, T., ‘Ramification of local fields with imperfect residue fields’, Amer. J. Math. 124 (2002), 879920.CrossRefGoogle Scholar
Barnet-Lamb, T., Gee, T. and Geraghty, D., ‘Congruences between Hilbert modular forms: constructing ordinary lifts, II’, Math. Res. Lett. 18 (2011).Google Scholar
Buzzard, K., ‘Analytic continuation of overconvergent eigenforms’, J. Amer. Math. Soc. 16 (2003), 2955.CrossRefGoogle Scholar
Buzzard, K., Dickinson, M., Shepherd-Barron, N. and Taylor, R., ‘On icosahedral Artin representations’, Duke Math. J. 109 (2001), 283318.Google Scholar
Buzzard, K. and Taylor, R., ‘Companion forms and weight one forms’, Ann. of Math. 149 (1999), 905919.CrossRefGoogle Scholar
Carayol, H., ‘Sur les représentations p-adiques associées aux formes modulaires de Hilbert’, Ann. Scient. de l’E.N.S. 19 (1986), 409468.Google Scholar
Chevalley, C., ‘Deux theorems d’arithmetic’, J. Soc. Math. Japan 3 (1951), 3644.CrossRefGoogle Scholar
Cornell, G., Silverman, J. H. and Stevens, G. (Eds.), Modular Forms and Fermat’s Last Theorem (Springer-Verlag, 1998).Google Scholar
Deligne, P. and Ribet, K., ‘Values of abelian L-functions at negative integers over totally real fields’, Invent. Math. 59 (1980), 227286.CrossRefGoogle Scholar
Diamond, F., ‘On deformation rings and Hecke rings’, Ann. of Math. (2) 144 (1) (1996), 137166.CrossRefGoogle Scholar
Ekedahl, T., ‘An effective version of Hilbert’s irreducibility theorem’, inSéminaire de Théorie des Nombres, (Paris, 1988–1989), Progress in Mathematics, 91 (Birkhäuser).Google Scholar
Gee, T., ‘Companion forms over totally real fields, II’, Duke Math. J. 136 (2007), 275284.CrossRefGoogle Scholar
Goren, E. and Oort, F., ‘Stratifications of Hilbert modular varieties’, J. Algebraic Geom. 9 (1) (2000), 111154.Google Scholar
Goren, E. and Kassaei, P., ‘Canonical subgroups over Hilbert modular varieties’, J. für die reine und angewandte Mathematik 670 (2012), 163.CrossRefGoogle Scholar
Hida, H., ‘On p-adic Hecke algebras for G L 2over totally real fields’, Ann. of Math. 128 (1988), 295384.CrossRefGoogle Scholar
Jarvis, F., ‘Correspondences on Shimura curves and Mazur’s principle above p ’, Pac. J. Math. 213 (2004), 267280.CrossRefGoogle Scholar
Khare, C. and Wintenberger, J. P., ‘Serre’s modularity conjecture II’, Invent. Math. 178 (2009), 505586.CrossRefGoogle Scholar
Kassaei, P., ‘Modularity lifting in parallel weight one’, J. Amer. Math. Soc. 26 (1) (2013), 199225.CrossRefGoogle Scholar
Kassaei, P., ‘Overconvergence, analytic continuation, and classicality: the case of curves’, J. für die reine und angewandte Mathematik 631 (2009), 109139.Google Scholar
Katz, N. and Mazur, B., Arithmetic Moduli of Elliptic Curves, Annals of Mathematical Studies, 108 (Princeton University Press, 1985).CrossRefGoogle Scholar
Kisin, M. and Lai, K. F., ‘Overconvergent Hilbert modular forms’, Amer. J. Math. 127 (2005), 735783.CrossRefGoogle Scholar
Kisin, M., ‘Moduli of finite flat group schemes and modularity’, Ann. of Math. 170 (2009), 10851180.CrossRefGoogle Scholar
Mokrane, A., ‘Quelques remarques sur l’ordinarité’, J. Number Theory 73 (1998), 162181.CrossRefGoogle Scholar
Nyssen, L., ‘Pseudo-représentations’, Math. Ann. 306 (1996), 257283.CrossRefGoogle Scholar
Pappas, G., ‘Arithmetic models for Hilbert modular varieties’, Comput. Math. 98 (1995), 4376.Google Scholar
Pilloni, V., ‘Formes modulaires $p$ -adiques de Hilbert de poids 1’, Preprint, 2012.Google Scholar
Pilloni, V., ‘Prolongement analytique sur les variétés de Siegel’, Duke Math. J. 157 (1) (2011), 167222.CrossRefGoogle Scholar
Pilloni, V. and Stroh, B., ‘Surconvergence et Classicité: le cas Hilbert’, Preprint 2011.Google Scholar
Pilloni, V. and Stroh, B., ‘Surconvergence, ramification et modularité’, Preprint 2013.Google Scholar
Rappoport, M., ‘Compactification de l’espace de modules de Hilbert–Blumenthal’, Comput. Math. 36 (1978), 255335.Google Scholar
Raynaud, M., ‘Schémas en groupes de type (p, …, p)’, Bull. de la S.M.F. 102 (1974), 241280.Google Scholar
Rogawski, J. and Tunnell, J., ‘On Artin L-functions associated to Hilbert modular forms of weight one’, Invent. Math. 1983 142.Google Scholar
Rouquier, R., ‘Caractérisation des Caractères et pseudo-Caractères’, J. Algebra 180 (1996), 571586.CrossRefGoogle Scholar
Rubin, K., Modularity of mod 5 representations, in [9], p. 463–474.Google Scholar
Sasaki, S., On Artin representations and nearly ordinary Hecke algebras over totally real fields, Preprint.Google Scholar
Serre, J. P., ‘Topics in Galois theory’, inResearch Notes in Mathematics Vol. 1 (Jones and Bartlett Publishers, 1992).Google Scholar
Shepherd-Barron, N. and Taylor, R, ‘Mod 2 and mod 5 icosahedral representations’, J. Amer. Math. Soc. 10 (1997), 283298.CrossRefGoogle Scholar
Shimura, G., ‘The special values of the zeta functions associated with Hilbert modular forms’, Duke Math. J. 45 (3) (1978), 637679.CrossRefGoogle Scholar
Stamm, H., ‘On the reduction of the Hilbert–Blumenthal-moduli scheme with Γ 0(p)-level structure’, Forum Math. 9 (4) (1990), 405455.Google Scholar
Taylor, R., ‘On Galois representations associated to Hilbert modular forms’, Invent. Math. 98 (1989), 265280.CrossRefGoogle Scholar
Taylor, R., ‘On icosahedral Artin representations II’, Amer. J. Math. 125 (2003), 549566.CrossRefGoogle Scholar
Tian, Y., Classicality of overconvergent Hilbert eigenforms: case of quadratic residue degree. arXiv:1104.4583.Google Scholar
Wiles, A., ‘On ordinary λ-adic representations associated to modular forms’, Invent. Math. 94 (1988), 529573.CrossRefGoogle Scholar
You have Access
Open access
2
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Modularity lifting results in parallel weight one and applications to the Artin conjecture: the tamely ramified case
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Modularity lifting results in parallel weight one and applications to the Artin conjecture: the tamely ramified case
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Modularity lifting results in parallel weight one and applications to the Artin conjecture: the tamely ramified case
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *