Skip to main content Accessibility help
×
Home
Hostname: page-component-cf9d5c678-j7tnp Total loading time: 0.365 Render date: 2021-07-28T21:34:33.842Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Control of the fetoplacental circulation

Published online by Cambridge University Press:  10 October 2008

Lena M Macara
Affiliation:
University Department of Obstetrics & Gynaecology, Royal Infirmary, Glasgow, UK
John CP Kingdom
Affiliation:
University Department of Obstetrics & Gynaecology, Royal Infirmary, Glasgow, UK
Peter Kaufmann
Affiliation:
Lehrstuhl fur Anatomie II, Klinikum der RWTH, Germany.

Extract

This year marks the 250th anniversary of the discovery by William Hunter of the existence of two distinct circulations within the human placenta. Until relatively recently the placenta has been viewed with “respect” – a passive structure which occasionally elicited fear and anxiety if implanted either too low or too deep. More recently our understanding of perinatal physiology, blood flow regulation and epidemiological data linking prenatal events with adult disease has created renewed interest in the placenta. This review will focus on the regulation of fetal blood flow in the placenta, the possible mechanisms whereby it may be deranged and why this might be relevant to adult disease.

Type
Articles
Copyright
Copyright © Cambridge University Press 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Barker, DJP. The fetal and infant origins of adult disease. London: British Medical Journal Books, 1992.Google Scholar
2Rona, RJ, Gulliford, MC, Chinn, S. Effects of prematurity and intrauterine growth on respiratory health and lung function in childhood. Br Med J 1993; 306: 817–20.CrossRefGoogle ScholarPubMed
3Hertig, AT, Rock, J. Two human ova of the pre-villous stage having a developmental age of about seven and nine days respectively. Contrib Embryol 1945; 29: 127–56.Google Scholar
4Lim, KH, Bass, K, Kosten, K, Damsky, CD, Fisher, S. Developmental delay of cytotrophoblast differentiation along the invasive pathway. 40th Society for Gynecological Investigation Meeting, Toronto, Canada, 1993: abstract S166.Google Scholar
5Luckett, WP, Beier, HM. Origin and differentiation of the yolk sac and extraembryonic mesoderm in presomite human and rhesus monkey embryos. Am J Anat 1978; 152: 5997.CrossRefGoogle ScholarPubMed
6Demir, R, Kaufmann, P, Castellucci, M, Erbengi, T, Kotowski, A. Fetal vasculogenisis and angiogenesis in human placental villi. Acta Anatomica 1989; 136: 190203.CrossRefGoogle ScholarPubMed
7Burchill, RC. Arterial blood flow in the human intervillous space. Am J Obstet Gynecol 1967; 98: 303–11.CrossRefGoogle Scholar
8Schaaps, JP, Hustin, J. In vivo aspect of the maternal-trophoblastic border during the first trimester of gestation. Troph Res 1988; 3: 3948.Google Scholar
9Hustin, J, Schaaps, JP. Echocardiographic and anatomic studies of the maternotrophoblastic border during the first trimester of pregnancy. Am J Obstet Gynecol 1987; 157: 162–68.CrossRefGoogle Scholar
10Rodesch, F, Simon, P, Donner, C, Jauniaux, E. Oxygen measurements in endometrial and trophoblastic tissues during early pregnancy. Obstet Gynecol 1992; 80: 283–85.Google ScholarPubMed
11Hustin, J, Schaaps, JP, Lambotte, R. Anatomical studies of the utero-placental vascularisation in the first trimester of pregnancy. Troph Res 1988; 3: 4960.Google Scholar
12Michel, MZ, Khong, TY, Clark, DA, Beard, RW. A morphological and immunological study of human placental bed biopsies in miscarriage. Br J Obstet Gynaecol 1990; 97: 984–88.CrossRefGoogle ScholarPubMed
13Hustin, J, Jauniaux, E, Schaaps, JP. Histological study of the materno-embryonic interface in spontaneous abortion. Placenta 1990; 11: 477–86.CrossRefGoogle ScholarPubMed
14Jauniaux, E, Jurkovic, D, Campbell, S, Hustin, J. Doppler ultrasonographic features of the developing placental circulation: correlation with anatomic findings. Am J Obstet Gynecol 1992; 166: 585–87.CrossRefGoogle ScholarPubMed
15Kurjak, A, Zalud, I, Salihagic, A, Crvenkovic, G, Matijevie, R. Transvaginal color Doppler in the assessment of abnormal early pregnancy. J Perinat Med 1990; 19: 155–65.CrossRefGoogle Scholar
16Wladimiroff, JW, Huisman, TWA, Stewart, PA. Fetal cardiac flow velocities in the late first trimester of pregnancy; a transvaginal Doppler study. J Am Coll Cardiol 1991; 17: 1357–59.CrossRefGoogle ScholarPubMed
17Hendricks, S, Sarensen, TK, Wong, KY et al. Doppler umbilical artery waveform indices - normal values from fourteen to forty-two weeks. Am J Obstet Gynecol 1989; 161: 761–65.CrossRefGoogle ScholarPubMed
18Jauniaux, E, Burton, GJ, Moscoso, GJ, Hustin, J. Development of the early human placenta: a morphometric study. Placenta 1991; 12: 269–76.CrossRefGoogle ScholarPubMed
19Jackson, MR, Mayhew, TM, Boyd, PA. Quantitative description of the elaboration and maturation of villi from 10 weeks of gestation to term. Placenta 1992; 13: 357–70.CrossRefGoogle ScholarPubMed
20Mayhew, TM, Jackson, MR, Boyd, PA. Changes in oxygen diffusive conductances of human placentae during gestation (10–41 weeks) are commensurate with the gain in fetal weight. Placenta 1993; 14: 5161.CrossRefGoogle ScholarPubMed
21Castellucci, M, Scheper, M, Scheffen, I, Celona, A, Kaufmann, P. The development of the human placental vascular tree. Anat Embryol 1989; 181: 117–28.Google Scholar
22Brosens, I, Robertson, WB, Dixon, HG. The physiological response of the vessels of the placental bed to normal pregnancy. J Pathol Bacteriol 1967; 93: 569–79.CrossRefGoogle ScholarPubMed
23Bernischke, K, Kaufmann, P. Pathology of the human placenta. New York: Springer, 1990.Google Scholar
24Leiser, R, Kosanke, G, Kaufmann, P. Human placental vascularization: structural and quantitative aspects. In: Soma, H, ed. Placenta - basic science for clinical application. Tokyo: Karger publications, 1991.Google Scholar
25Rudolph, AM, Heymann, MA. The circulation of the fetus in utero: methods for studying distribution of blood flow. Circ Res 1967; 21: 163–84.CrossRefGoogle ScholarPubMed
26Eik-Nes, S, Brubakk, AO, Ulstein, M. Measurement of human fetal blood flow. Br Med J 1980; i: 283–84.Google Scholar
27Giles, WB, Lingman, G, Marsal, K, Trudinger, BJ. Fetal volume blood flow and umbilical artery flow velocity waveform analysis: a comparison. Br J Obstet Gynaecol 1986; 93: 461–65.CrossRefGoogle ScholarPubMed
28Reilly, FD, Russell, PT. Neurohistochemical evidence supporting an absence of adrenergic and cholinergic innervation in the human placenta and umbilical cord. Anat Rec 1977; 188: 277–86.CrossRefGoogle ScholarPubMed
29Fox, SB, Khong, TY. Lack of innervation of human umbilical cord. An immunological and histochemical study. Placenta 1990; 11: 5962.CrossRefGoogle Scholar
30Gupta, I, Hillier, VF, Edwards, JM. Multiple vascular profiles in the umbilical cord; an indication of maternal smoking habits and intrauterine distress. Placenta 1993; 14: 117–23.CrossRefGoogle ScholarPubMed
31Nordenvall, M, Ullberg, I, Laurin, J, Lingman, G, Sandstedt, B, Ulmsten, U. Placental morphology in relation to umbilical artery blood velocity waveforms. Eur J Obstet Gynaecol Reprod Biol 1991; 40: 179–90.CrossRefGoogle ScholarPubMed
32Kaufmann, P. Basic morphology of the fetal and maternal circuits in the human placenta. Cont Gynecol Obstet 1985; 13: 517.Google ScholarPubMed
33Kaufmann, P, Luckhardt, M, Leiser, R. Three-dimensional representation of the fetal vessel system in the human placenta. Troph Res 1988; 3: 113–37.Google Scholar
34Vane, JR, Anggard, EE, Botting, RM. Regulatory mechanisms of the vascular endothelium. New Eng J Med 1990; 323: 2736.Google Scholar
35Benedetto, C, Barbero, M, Rey, L et al. Production of prostacyclin, 6–keto PGF 1α and thromboxane B2 by human umblical vessels increases from the placenta towards the fetus. Br J Obstet Gynaecol 1987; 94: 1165–69.CrossRefGoogle Scholar
36Jacobson, RL, Brewer, A, Eis, A, Siddiqi, TA, Myatt, L. Transfer of aspirin across the perfused human placental cotyledon. Am J Obstet Gynecol 1991; 165: 939–44.CrossRefGoogle ScholarPubMed
37Templeton, A, Kingdom, JCP, Whittle, M, McGrath, J. Contractile responses of the human umbilical artery from pregnancies complicated by hypertension and intrauterinre growth retardation. Placenta 1991; 12: 439.Google Scholar
38Palmer, RMJ, Ferrige, AG, Moncada, S. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 1987; 327: 524–26.CrossRefGoogle ScholarPubMed
39Van der Voorde, J, Vanderstichele, H, Leusen, I. Release of endothelium-derived relaxing factor from human umbilical vessels. Circ Res 1987; 60: 517–22.CrossRefGoogle Scholar
40Myatt, L, Brewer, A, Brockman, DE. The action of nitric oxide in the perfused human fetal-placental circulation. Am J Obstet Gynecol 1991; 164: 687–92.CrossRefGoogle ScholarPubMed
41Chaudhuri, G, Buga, GM, Gold, ME, Wood, KS, Ignarro, LJ. Characterisation and actions of human umbilical endothelium derived relaxing factor. Br J Pharm 1991; 102: 331–36.CrossRefGoogle Scholar
42Myatt, L, Brockman, DE, Eis, ALW, Pollock, JS. Immunohistochemical localization of nitric oxide synthase in the human placenta. Placenta 1993; in press.CrossRefGoogle ScholarPubMed
43Salas, SP, Power, RF, Singleton, A, Wharton, J, Polak, JM, Brown, J. Heterogeneous binding sites for α-atrial natriuretic peptide in human umbilical cord and placenta. Am J Physiol 1991; 261: R633–R638.Google ScholarPubMed
44McQueen, J, Kingdom, JCP, Whittle, MJ, Connell, JMC. Characterization of atrial natriuretic peptide receptors in the human fetoplacental vasculature. Am J Physiol 1993; 264 (Heart Circ Physiol): H798–H804.Google ScholarPubMed
45Inglis, GC, Kingdom, JCP, Nelson, DM et al. A trial natriuretic hormone: a parcrine or endocrine role within the human placenta? JCEM 1993; 76: 1014–18.Google ScholarPubMed
46Wharton, J, Anderson, RH, Springall, D et al. Localisation of atrial natriuretic peptide immunoreactivity in the ventricular myocardium and conduction system of the fetal and adult heart. Br Heart J 1988; 60: 267–74.CrossRefGoogle ScholarPubMed
47Cai, WQ, Terenghi, G, Bodin, P, Burnstock, G, Polak, JM. In-situ hybridization of atrial natriuretic peptide mRNA in the endothelial cells of human umbilical vessels. Histochemistry 1993; in press.CrossRefGoogle ScholarPubMed
48Kingdom, JCP, McQueen, J, Connell, JMC, Whittle, MJ. Maternal and fetal atrial natriuretic peptide levels at delivery from normal and growth retarded pregnancies. Br J Obstet Gynaecol 1992; 99: 845–49.CrossRefGoogle ScholarPubMed
49McQueem, J, Jardine, AG, Kingdom, JCP, Templeton, A. Interaction of angiotensin II and atrial natriuretic peptide in the human fetoplacental unit. Am J Hypertens 1991; 3: 641–44.CrossRefGoogle Scholar
50Kingdom, JCP, Ryan, G, Whittle, MJ et al. Atrial natriuretic peptide: a vasodilator of the fetoplacental circulation? Am J Obstet Gynecol 1991; 165: 791800.CrossRefGoogle ScholarPubMed
51Mandsager, NT, Brewer, A, Myatt, L. Vasodilator effects of parathyroid hormone, parathyroid hormone related peptide and calcitonin gene related peptide in the human fetal-placental circulation. 40th Society for Gynecologic Investigation Meeting, Toronto, Canada, 1993: abstract P265.Google Scholar
52Mak, KKW, Gude, NM, Walters, WAW, Boura, ALA. Effects of vasoactive autocoids on the human umbilical-fetal placental vasculature. Br J Obstet Gynaecol 1984; 91: 99106.CrossRefGoogle Scholar
53Templeton, AGB, Whittle, MJ, McGrath, JC. The role of endogenous thromboxane in contractions to U46619, oxygen, 5-HT and 5-CT in the human isolated umbilical artery. Br J Pharmacol 1991; 103: 1079–84.CrossRefGoogle ScholarPubMed
54Soothill, P, Nicolaides, KH, Rodeck, CH, Campbell, S. Effect of gestational age on fetal and intervillous blood gas and acid-base values in human pregnancy. Fetal Therapy 1986; 1: 168–75.CrossRefGoogle ScholarPubMed
55Thorp, JA, Walsh, SW, Brath, PC. Comparison of the vasoactive effects of leucotrienes with thromboxane mimic in the perfused human placenta. Am J Obstet Gynecol 1988; 159: 1376–80.CrossRefGoogle Scholar
56Yanagisawa, M, Kurihara, H, Kimura, S et al. A novel potent vasoconstrictor poptide produced by vascular endothelial cells. Nature 1988; 332: 411–15.CrossRefGoogle Scholar
57Benigni, A, Gaspari, F, Orisi, S et al. Human placenta expresses endothelin gene and corresponding protein is excreted in urine in increasing amounts during normal pregnancy. Am J Obstet Gynecol 1991; 164: 844–48.CrossRefGoogle ScholarPubMed
58Hemsen, A, Gillis, C, Larson, O, Haegerstrand, A, Lundberg, JM. Characterization, localisation and actions of endothelin in umbilical vessels and placenta of man. Acta Physiol Scand 1991; 43: 395404.CrossRefGoogle Scholar
59Wilkes, BM, Mento, PF, Hollander, AM, Maita, ME, Sung, SY, Girardi, EP. Endothelin receptors in human placenta: relationship to vascular resistance and thromboxane release. Am J Physiol 1990; 258: E86470.Google ScholarPubMed
60Roubat, C, Mondon, F, Bandet, J, Ferre, F, Cavero, I. Regional distribution and pharmacological characterization of endothelin – I binding sites in human fetal placental vessels. Placenta 1991; 12: 5567.CrossRefGoogle Scholar
61Myatt, L, Langdon, G, Brewer, AS, Brockman, DE. Endothelin-1 – induced vasoconstriction is not mediated by thromboxane release and action in the human fetal-placental circulation. Am J Obstet Gynecol 1991; 165: 1717–22.CrossRefGoogle Scholar
62Milner, P, Loesch, A, Burnstock, G. Rapid release of endothelin and ANP from isolated aortic endothelial cells expressed to increasing flow. Biochem Biophys Res Comm 1990; 170: 649–56.CrossRefGoogle Scholar
63Wilkes, BM, Krim, E, Mento, PF. Evidence for a functional renin-angiotensin system in full term feto-placental unit. Am J Physiol 1984; 249: E864–E870.Google Scholar
64Glance, DG, Elder, MG, Bloxam, DL, Myatt, L. The effects of the components of the renin-angiotensin system on the isolated perfused human placental cotyledon. Am J Obstet Gynecol 1984; 149: 450–54.CrossRefGoogle ScholarPubMed
65Cooke, SF, Craven, DJ, Symonds, EM. A study of angiotensin II binding sites in human placenta, chorion and amnion. Am J Obstet Gynecol 1981; 140: 689–92.CrossRefGoogle ScholarPubMed
66Tence, M, Petit, A. Characterisation of angiotensin II binding sites in the human term placenta. Molecular Cell Endocrinol 1989; 63: 111–19.CrossRefGoogle Scholar
67Graham, PC, Kingdom, JCP, Raweily, EA, Gibson, AAM, Lindop, GBM. Distribution of renin-containing cells in the developing human kindney: an immunocytochemical study. Br J Obstet Gynaecol 1992; 99: 765–69.CrossRefGoogle Scholar
68Ihara, Y, Taii, S, Mori, T. Expression of renin and angiotensinogen genes in the human placenta tissues. Endocrinologia Japonica 1989; 34: 887–96.CrossRefGoogle Scholar
69Keyurrangual, V, Samani, NJ, Craven, DJ, Symonds, EM. Expression of components of the renin-angiotensin system in human placenta and fetal membranes. Medical Research Society Meeting. London, October 1991.Google Scholar
70Boura, ALA, Walters, WAW. Autocoids and the control of vascular tone in the human umbilical placental circulation. Placenta 1991; 12: 453–77.CrossRefGoogle Scholar
71Myatt, L. Control of vascular resistance in the human placenta. Placenta 1992; 13: 329–41.CrossRefGoogle ScholarPubMed
72Seeds, JW, Impaired fetal growth: definition and clinical diagnosis. Am J Obstet Gynecol 1984; 64: 303–10.Google ScholarPubMed
73Snijders, RJM, Sherrod, C, Gosden, CM, Nicolaides, KH. Fetal growth retardation: associated malformations and chromosomal abnormalities. Am J Obstet Gynecol 1993; 168: 547–55.CrossRefGoogle ScholarPubMed
74Pardi, G, Cetin, I, Marconi, AM et al. Diagnostic value of blood sampling in fetuses with growth retardation. New Eng J Med 1993; 328: 692–97.CrossRefGoogle ScholarPubMed
75Burke, G, Stuart, B, Crowley, P, Ni Scanaill, S, Drumm, J. Is intrauterine growth retardation with normal umbilical artery blood flow a benign condition? Br Med J 1990; 300: 1044–45.CrossRefGoogle ScholarPubMed
76Fairlie, FM, Moretti, M, Walker, JJ, Sibai, BM. Determinants of perinatal outcome in pregnancy-induced hypertension with absence of end-diastolic frequencies. Am J Obstet Gynecol 1991; 164: 1084–89.CrossRefGoogle ScholarPubMed
77Nicolaides, KH, Bilardo, CM, Soothill, PW, Campbell, S. Absence of end-diastolic frequencies in the umbilical artery: a sign of fetal hypoxia and acidosis. Br Med J 1988; 297: 1026–27.CrossRefGoogle ScholarPubMed
78Nicolini, U, Nicolides, P, Fisk, NM et al. Limited role of fetal blood sampling in prediction of outcome in intrauterine growth retardation. Lancet 1990; 336: 768–82.CrossRefGoogle ScholarPubMed
79Snijders, RJM, Abbas, A, Melby, O, Ireland, RM, Nicolaides, KH. Fetal plasma erythropoietin concentration in severe growth retardation. Am J Obstet Gynecol 1993; 168: 615–19.CrossRefGoogle ScholarPubMed
80Giles, WB, Trudinger, BJ, Baird, P. Fetal umbilical artery flow velocity waveforms and placental resistance: pathological correlation. Br J Obstet Gynaecol 1985; 92: 3138.CrossRefGoogle ScholarPubMed
81McCowan, LM, Mullen, BM, Ritchie, K. Umbilical artery flow velocity waveforms and the placental vascular bed. Am J Obstet Gynecol 1987; 157: 900902.CrossRefGoogle ScholarPubMed
82Trudinger, BJ, Stevens, D, Connelly, A et al. Flow velocity waveforms and the placental resistance: the effects of embolization of the umbilical circulation. Am J Obstet Gynecol 1987; 157: 1443–49.CrossRefGoogle ScholarPubMed
83Morrow, RJ, Adamson, SL, Bull, SB, Ritchie, JWK. Effect of placental embolization on the umbilical arterial velocity waveform in fetal sheep. Am J Obstet Gynecol 1989; 161: 1055–60.CrossRefGoogle ScholarPubMed
84Copel, JA, Schlafer, D, Wentworth, R, Belanger, K, Kreitzer, L, Hobbins, JC, Nathanielsz, PW. Does the umbilical artery systolic/diastolic ratio reflect flow or acidosis?. Am J Obstet Gynecol 1990; 163: 751–56.CrossRefGoogle ScholarPubMed
85Schmidt, KG, Di Tommaso, M, Silverman, NH, Rudolph, AM. Evaluation of changes in umbilical blood flow in the fetal lamb by Doppler waveform analysis. Am J Obstet Gynecol 1991; 164: 1118–26.CrossRefGoogle ScholarPubMed
86Morrow, RJ, Bull, S, Ritchie, JWK. Pathological basis of abnormal Doppler waveforms. In: Pearce, M ed. Doppler ultrasound in perinatal medicine. London: Churchill Livingstone, 1992.Google Scholar
87Wallenburg, HC, Rotmans, N. Prevention of recurrent idiopathic fetal growth retardation by low dose aspirin and dipyridamole. Am J Obstet Gynecol 1987; 157: 1230–50.CrossRefGoogle ScholarPubMed
88Trudinger, BJ, Cook, CM, Thompson, RS, Giles, WB, Connelly, A. Low dose aspirin therapy improves fetal weight in umbilical placental insufficiency. Am J Obstet Gynecol 1988; 159: 681–85.CrossRefGoogle ScholarPubMed
89Uzan, S, Beaufils, M, Breart, G, Bazin, B, Capitant, C, Paris, J. Prevention of fetal growth retardation with low dose aspirin: findings of the EPREDA trial. Lancet 1991; 337: 1427–31.CrossRefGoogle ScholarPubMed
90Van den Hof, MC, Nicolaides, KH. Platelet count in normal, small, and anaemic fetuses. Am J Obstet Gynecol 1990; 162: 753–59.CrossRefGoogle Scholar
91Wilcox, GR, Trudinger, BJ. Fetal platelet consumption: a feature of placental insufficiency. Am J Obstet Gynecol 1991; 77: 616–21.Google ScholarPubMed
92Nelson, DM, Walsh, SW. Aspirin differentially affects thromboxane and prostacyclin production by trophoblast and villous core compartments of human placental villi. Am J Obstet Gynecol 1989; 161: 1593–98.CrossRefGoogle ScholarPubMed
93Peaceman, AM, Rehnberg, K. Effect of IgG fraction from patients with lupus anticoagulant on placental prostacyclin and thromboxane production. 40th Society for Gynecologic Investigation, Toronto, Canada, 1993: Abstract S65.Google Scholar
94Inayatulla, A, Chemtob, S, Nuwayhid, B, Varma, DR. Responses of placental arteries from normotensive and preeclamptic women to endogenous vasoactive agents. Am J Obstet Gynecol 1993; 168: 869–74.CrossRefGoogle ScholarPubMed
95McLaren, M, Greer, IA, Walker, J, Forbes, CD. Reduced prostacyclin production by umbilical arteries from pregnancies complicated by severe pregnancy-induced hypertension. Clin Exp Hypertens 1987; [B]2: 365–74.Google Scholar
96Stuart, MJ, Clark, DA, Sunderji, SG, Allen, JB, Yambo, T, Elrad, H, Slott, JH. Decreased prostacyclin production: a characteristic of chronic placental insufficiency syndromes. Lancet 1981; i: 1126–28.CrossRefGoogle Scholar
97Pinto, A, Sorrentino, R, Sorrentino, P, Guerritore, T, Miranda, L, Biondi, A, Martinelli, P. Endothelial-derived relaxing factor released by endothelial cells of human umbilical vessels and its impairment in pregnancy-induced hypertension. Am J Obstet Gynecol 1991; 164: 507–13.CrossRefGoogle ScholarPubMed
98McCarthy, A, Patterson-Brown, S, Raju, K, Poston, L. Functional properties of small placental arteries in relation to abnormal umbilical Doppler waveform analysis(abstract). Placenta 1993; in press.Google Scholar
99Hartikainen-Sorri, A-L, Vuolteenaho, O, Leppaluoto, J, Ruskoacho, H. Endothelin in umbilical artery vasopasm. Lancet 1991; 337: 619.CrossRefGoogle Scholar
100McQueen, J, Kingdom, JCP, Connell, JMC, Whittle, MJ. Fetal endothelin levels and placental vascular endothelin receptors in intrauterine growth retardation. Obstet Gynecol 1993; in press.Google Scholar
101Heida, HS, Gomes-Sanchez, CE. Hypoxia increases endothelin release in bovine endothelial cells in culture, but epinephrine, norepinephrine, serotonin and angiotensin II do not. Life Sci 1990; 47: 247–51.CrossRefGoogle Scholar
102Kindom, JCP, Neth-Jesse, L, Czekierdowski, A, Miller, RK. Placental release of endothelin-1 under hypoxic conditions in vitro(abstract). Placenta 1993; in press.Google Scholar
103Weiner, CP, Robillard, JE. Atrial natriuretic factor, digoxin-like immunoreactive substance, norepinephrine, epinephrine, and plasma renin activity in human fetuses and their alteration by fetal disease. Am J Obstet Gynecol 1988; 159: 1353–60.CrossRefGoogle ScholarPubMed
104Tannirandorn, Y, Fisk, NM, Shah, V et al. Plasma renin activity in fetal disease. J Perinat Med 1990; 18: 229–31.Google ScholarPubMed
105Broughton-Pipkin, F, Symonds, EM. Factors affecting angiotensin II concentrations in the human infant at birth. Clin Sci Mol Med 1977; 52: 449–56.Google ScholarPubMed
106Kingdom, JCP, McQueen, J, Connell, JMC, Whittle, MJ. Fetal angiotensin II levels and vascular (type 1) angiotensin receptors in pregnancies complicated by intrauterine growth retardation. Br J Obstet Gynaecol 1993; 100: 476–82.CrossRefGoogle ScholarPubMed
107Kingdom, JCP, McQueen, J, Ryan, G, Connell, JMC, Whittle, MJ. Fetal vascular atrial natriuretic peptide receptors in human placenta: alteration in intrauterine growth retardation and pre-eclampsia. Am J Obstet Gynecol 1993; in press.Google Scholar
108Jackson, MR, Walsh, AJ, Morrow, RJ, Mullen, BM, Lye, SJ, Ritchie, JWK. Structural and biophysical analyses of placentae from normal and IUGR pregnancies. 40th Society for Gynecologic Investigation Meeting, Toronto, Canada, 1993: abstract S62.Google Scholar
109Hitschold, T, Weiss, E, Beck, T, Hunterfering, H, Berle, P. Low target birth weight or growth retardation? Umbilical doppler flow velocity waveforms and histometric analysis of fetoplacental vascular tree. Am J Obstet Gynecol 1993; 168: 1260–64.CrossRefGoogle ScholarPubMed
110Hsi, BL, Yeh, CJG. Monoclonal antibodies to placental vascular structures. Troph Res 1988; 3: 139–48.Google Scholar
111Todros, T, Sciarrone, A, Guiot, C et al. The vascular tree of the human term placenta: morphometric evaluation and mathematical modelling. Placenta 1993; in press.CrossRefGoogle Scholar
112Lee, MML, Yeh, M. Fetal microcirculation of abnormal human placenta. Am J Obstet Gynecol 1986; 154: 1133–39.CrossRefGoogle ScholarPubMed
113Alvarez, H, Morel, RL, Benedetti, WL, Scavarelli, M. Trophoblast hyperplasia and maternal arterial pressure at term. Am J Obstet Gynecol 1969; 105: 1015–21.CrossRefGoogle ScholarPubMed
114Schuhmann, R, Geier, G. Histomorphologische placentabefunde bei EPG-Gestose. Arch Gynakol 1972; 213: 3147.CrossRefGoogle Scholar
115Jackson, MR, Mayhew, TM, Hass, JD. Morphometric studies on villi in human term placentae and the effects of altitude, ethnic grouping and sex of the newborn. Placenta 1987; 8: 487–95.CrossRefGoogle Scholar
116Mironov, VA, Katcher, OV, Lebedeva, IM. Three-dimensional morphology of placental villous tree and anthropometric estimations of newborns from kirgizian women living at high altitude. Placenta 1991; 12: 421.Google Scholar
117Reshetnikova, OS, Burton, GJ, Milovanov, AP. The effects of hypobaric hypoxia on the terminal villi of the human placenta. J Physiol 1993; 459: 308.Google Scholar
118Bacon, BJ, Gilbert, RD, Kaufmann, P, Smith, AD, Trevino, FT, Longo, L. Placental anatomy and diffusing capacity in guinea pigs following long term hypoxia. Placenta 1984; 5: 475–88.CrossRefGoogle Scholar
119Scheffen, I, Kaufmann, P, Philippens, L, Leiser, R, Geisen, C, Mottaghy, K. Alterations of the fetal capillary bed in the guinea pig placenta following long-term hypoxia. In:Piper, J, Goldstick, TK, Meyer, D eds. Oxygen transport to tissue, Vol XII. New York: Plenum Press, 1991.Google Scholar
120Ogawa, S, Leavy, J, Clauss, M et al. Modulation of endothelial cell (EC) function in hypoxia: alterations in cell growth and the response to monocyte-derived mitogenic factors. J Cell Biochem Suppl 1991; 15F: 213.Google Scholar
121Shreeniwas, R, Ogawa, S, Cozzolino, F et al. Macrovascular and microvascular endothelium during long-term hypoxia: alterations in cell growth monolayer permeability and cell surface coagulant properties. J Cell Physiol 1991; 146: 817.CrossRefGoogle ScholarPubMed
122Werb, Z. How the macrophage regulates its extracellular environment. Am J Anat 1983; 166: 237–56.CrossRefGoogle ScholarPubMed
123Holmgren, L, Glaser, A, Pfeifer-Ohlsson, S, Ohlsson, R. Angiogenesis during human extraembryonic development involves the spatiotemporal control of PDGF ligand and receptor gene expression. Devel 1991; 113: 749–54.Google ScholarPubMed
124Guiot, C, Pianta, PG, Todros, T. Modelling the feto-placental circulation: a distributed network predicting umbilical haemodynamics throughout pregnancy. Ultrasound Med Biol 1992; 18: 535–44.CrossRefGoogle ScholarPubMed
125Todros, T, Guiot, C, Pianta, PG. Modelling the feto-placental circulation: 2. a continuous approach to explain normal and abnormal flow velocity waveforms in the umbilical arteries. Ultrasound Med Biol 1992; 18: 545–51.CrossRefGoogle ScholarPubMed
126Giaid, A, Yanagisawa, M, Langleben, D et al. Expression of endothelin-1 in the lungs of patients with pulmonary hypertension. New Eng J Med 1993; 328: 1732–39.CrossRefGoogle ScholarPubMed
127Swenne, I, Crace, CJ, Milner, RDG. Persistent impairment of insulin secretory response to glucose in adult rats after limited period of protein-calorie malnutrition early in life. Diabetes 1987; 36: 454–58.CrossRefGoogle ScholarPubMed
128Gennser, G, Rymark, P, Isberg, PE. Low birthweight and risk of high blood pressure in adulthood. Br Med J 1988; 298: 1498–99.CrossRefGoogle Scholar
129Williams, S, St. George, IM, Silva, PA. Intrauterine growth retardation and blood pressure at age seven and eighteen. J Clin Epidemiol 1992; 45: 1257–63.CrossRefGoogle ScholarPubMed
130Barker, DJP, Bull, AR, Osmond, C, Simmonds, SJ. Fetal and placental size and risk of hypertension in adult life. Br Med J 1990; 301: 259–62.CrossRefGoogle ScholarPubMed
131Lever, AF. Slow pressor mechanisms in hypertension a role for hypertrophy of resistance vessels. J Hypertens 1986; 4: 515–24.CrossRefGoogle ScholarPubMed
132Fok, RY, Pavlova, Z, Benirschke, K, Paul, R, Platt, LD. The correlation of arterial lessions with umbilical artery Doppler velocimetry in the placentas of small-for-dates pregnancies. Obstet Gynecol 1990; 75: 578–83.Google Scholar
133Bertrand, C, Duperron, L, St-Louis, J. Umbilical and placental vessels: modifications of their mechanical properties in preeclampsia. Am J Obstet Gynecol 1993; 168: 1537–46.CrossRefGoogle ScholarPubMed
134Morton, JJ, Beattie, EC, MacPherson, F. Angiotensin II receptor antagonist losartan has persistent effects on blood pressure in the young spontaneously hypertensive rat: lack of relation to vascular structure. J Vasc Res 1992; 29: 264–69.CrossRefGoogle Scholar
28
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Control of the fetoplacental circulation
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Control of the fetoplacental circulation
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Control of the fetoplacental circulation
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *