Hostname: page-component-7479d7b7d-767nl Total loading time: 0 Render date: 2024-07-11T19:16:23.511Z Has data issue: false hasContentIssue false

Pandora's Box: mitochondrial defects in ischaemic heart disease and stroke

Published online by Cambridge University Press:  05 April 2017

Sasan Andalib*
Affiliation:
Neuroscience Research Center, Department of Neurosurgery, Poursina Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
Afshin A. Divani
Affiliation:
Department of Neurology, University of Minnesota, Minneapolis, MN, USA Department of Neurosurgery, University of Minnesota, Minneapolis, MN, USA Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
Tanja M. Michel
Affiliation:
Department of Psychiatry, Psychiatry Region of Southern Denmark, Odense, Denmark Research Unit of Psychiatry, Institute of Clinical Research, University of Southern Denmark, Odense, Denmark Center for Applied Neuroscience, BRIDGE, Odense University Hospital, Psychiatry in the Region of Southern Denmark, University of Southern Denmark, Odense, Denmark
Poul F. Høilund-Carlsen
Affiliation:
Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark Department of Neurology, Neurosciences Research Center, Imamreza Hospital, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
Manouchehr S. Vafaee
Affiliation:
Department of Psychiatry, Psychiatry Region of Southern Denmark, Odense, Denmark Research Unit of Psychiatry, Institute of Clinical Research, University of Southern Denmark, Odense, Denmark Center for Applied Neuroscience, BRIDGE, Odense University Hospital, Psychiatry in the Region of Southern Denmark, University of Southern Denmark, Odense, Denmark Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark Department of Neurology, Neurosciences Research Center, Imamreza Hospital, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
Albert Gjedde
Affiliation:
Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark Department of Neurology, Neurosciences Research Center, Imamreza Hospital, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, Maryland, USA
*
*Corresponding author:Sasan Andalib, PhD, Neuroscience Research Center, Department of Neurosurgery, Poursina Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran. Tel: +981333322444; E-mail: andalib@gums.ac.ir

Abstract

Ischaemic heart disease and stroke are vascular events with serious health consequences worldwide. Recent genetic and epigenetic techniques have revealed many genetic determinants of these vascular events and simplified the approaches to research focused on ischaemic heart disease and stroke. The pathogenetic mechanisms of ischaemic heart disease and stroke are complex, with mitochondrial involvement (partially or entirely) recently gaining substantial support. Not only can mitochondrial reactive oxygen species give rise to ischaemic heart disease and stroke by production of oxidised low-density lipoprotein and induction of apoptosis, but the impact on pericytes contributes directly to the pathogenesis. Over the past two decades, publications implicate the causative role of nuclear genes in the development of ischaemic heart disease and stroke, in contrast to the potential role of mitochondrial DNA (mtDNA) in the pathophysiology of the disorders, which is much less understood, although recent studies do demonstrate that the involvement of mitochondria and mtDNA in the development of ischaemic heart disease and stroke is likely to be larger than originally thought, with the novel discovery of links among mitochondria, mtDNA and vascular events. Here we explore the molecular events and mtDNA alterations in relation to the role of mitochondria in ischaemic heart disease and stroke.

Type
Review
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Co-authors contributed equally.

References

2. Bonomini, F. et al. (2008) Atherosclerosis and oxidative stress. Histology and Histopathology 23, 381-390 Google ScholarPubMed
3. Thygesen, K. et al. (2012) Third universal definition of myocardial infarction. Journal of the American College of Cardiology 60, 1581-1598 CrossRefGoogle ScholarPubMed
4. Tsujita, K. et al. (2010) Acute coronary syndrome-initiating factors. Nihon Rinsho 68, 607-614 Google ScholarPubMed
5. Talebi, M. et al. (2014) A comparison of risk factors and severity of ischemic stroke in female and male genders in North-West Iran: a cross-sectional study. Iranian Journal of Neurology 13, 215-219 Google ScholarPubMed
6. Shaafi, S. et al. (2014) Interleukin-6, a reliable prognostic factor for ischemic stroke. Iranian Journal of Neurology 13, 70-76 Google ScholarPubMed
7. Markus, H.S. (2011) Stroke genetics. Human Molecular Genetics 20(R2), R124-RR31 CrossRefGoogle ScholarPubMed
8. Myers, R.H. et al. (1990) Parental history is an independent risk factor for coronary artery disease: the Framingham study. American Heart Journal 120, 963-969 CrossRefGoogle ScholarPubMed
9. Murabito, J.M. et al. (2005) Sibling cardiovascular disease as a risk factor for cardiovascular disease in middle-aged adults. JAMA 294, 3117-3123 CrossRefGoogle ScholarPubMed
10. Flobmann, E., Schulz, U.G. and Rothwell, P.M. (2004) Systematic review of methods and results of studies of the genetic epidemiology of ischemic stroke. Stroke 35, 212-227 CrossRefGoogle Scholar
11. Consortium, I.K.C. (2011) Large-scale gene-centric analysis identifies novel variants for coronary artery disease. PLoS Genetics 7, e1002260 Google Scholar
12. Kessler, C. et al. (1997) The apolipoprotein E and β-fibrinogen G/A-455 gene polymorphisms are associated with ischemic stroke involving large-vessel disease. Arteriosclerosis, Thrombosis, and Vascular Biology 17, 2880-2884 CrossRefGoogle ScholarPubMed
13. Hassan, A. and Markus, H.S. (2000) Genetics and ischaemic stroke. Brain 123, 1784-1812 CrossRefGoogle ScholarPubMed
14. Madamanchi, N.R. and Runge, M.S. (2007) Mitochondrial dysfunction in atherosclerosis. Circulation Research 100, 460-473 CrossRefGoogle ScholarPubMed
15. Ballinger, S.W. (2005) Mitochondrial dysfunction in cardiovascular disease. Free Radical Biology and Medicine 38, 1278-1295 CrossRefGoogle ScholarPubMed
16. Niizuma, K., Endo, H. and Chan, P.H. (2009) Oxidative stress and mitochondrial dysfunction as determinants of ischemic neuronal death and survival. Journal of Neurochemistry 109(s1), 133-138 CrossRefGoogle ScholarPubMed
17. Vaishnavi, S.N. et al. (2010) Regional aerobic glycolysis in the human brain. Proceedings of the National Academy of Sciences of the United States of America 107, 17757-17762 CrossRefGoogle ScholarPubMed
18. Lunt, S.Y. and Vander Heiden, M.G. (2011) Aerobic glycolysis: meeting the metabolic requirements of cell proliferation. Annual Review of Cell and Developmental Biology 27, 441-464 CrossRefGoogle ScholarPubMed
19. Vander Heiden, M.G., Cantley, L.C. and Thompson, C.B. (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324, 1029-1033 CrossRefGoogle ScholarPubMed
20. Raichle, M.E., Posner, J.B. and Plum, F. (1970) Cerebral blood flow during and after hyperventilation. Archives of Neurology 23, 394-403 CrossRefGoogle ScholarPubMed
21. Gjedde, A., Marrett, S. and Vafaee, M. (2002) Oxidative and nonoxidative metabolism of excited neurons and astrocytes. Journal of Cerebral Blood Flow & Metabolism 22, 1-14 CrossRefGoogle ScholarPubMed
22. Robinson, J.B. Jr. and Srere, P.A. (1985) Organization of Krebs tricarboxylic acid cycle enzymes in mitochondria. Journal of Biological Chemistry 260, 10800-5CrossRefGoogle ScholarPubMed
23. Saraste, M. (1999) Oxidative phosphorylation at the fin de siecle. Science 283, 1488-1493 CrossRefGoogle ScholarPubMed
24. Raha, S. and Robinson, B.H. (2000) Mitochondria, oxygen free radicals, disease and ageing. Trends in Biochemical Sciences 25, 502-508 CrossRefGoogle ScholarPubMed
25. Cadenas, E. and Davies, K.J. (2000) Mitochondrial free radical generation, oxidative stress, and aging. Free Radical Biology and Medicine 29, 222-230 CrossRefGoogle ScholarPubMed
26. Muller, F. (2000) The nature and mechanism of superoxide production by the electron transport chain: its relevance to aging. Journal of the American Aging Association 23, 227-253 Google ScholarPubMed
27. Balaban, R.S., Nemoto, S. and Finkel, T. (2005) Mitochondria, oxidants, and aging. Cell 120, 483-495 CrossRefGoogle ScholarPubMed
28. Murphy, M. (2009) How mitochondria produce reactive oxygen species. Biochemical Journal 417, 1-13 CrossRefGoogle ScholarPubMed
29. Turrens, J.F. (1997) Superoxide production by the mitochondrial respiratory chain. Bioscience Reports 17, 3-8 CrossRefGoogle ScholarPubMed
30. Richter, C. et al. (1995) Oxidants in mitochondria: from physiology to diseases. Biochimica et Biophysica Acta (BBA) – Molecular Basis of Disease 1271, 67-74 CrossRefGoogle ScholarPubMed
31. Nicholls, D.G. and Budd, S.L. (2000) Mitochondria and neuronal survival. Physiological Reviews 80, 315-360 CrossRefGoogle ScholarPubMed
32. Inoue, M. et al. (2003) Mitochondrial generation of reactive oxygen species and its role in aerobic life. Current Medicinal Chemistry 10, 2495-2505 CrossRefGoogle ScholarPubMed
33. Takeshige, K. and Minakami, S. (1979) NADH-and NADPH-dependent formation of superoxide anions by bovine heart submitochondrial particles and NADH-ubiquinone reductase preparation. Biochemical Journal 180, 129-135 CrossRefGoogle ScholarPubMed
34. Beyer, R.E. (1992) An analysis of the role of coenzyme Q in free radical generation and as an antioxidant. Biochemistry and Cell Biology 70, 390-403 CrossRefGoogle ScholarPubMed
35. Sugioka, K. et al. (1988) Mechanism of O−2 generation in reduction and oxidation cycle of ubiquinones in a model of mitochondrial electron transport systems. Biochimica et Biophysica Acta (BBA) – Bioenergetics 936, 377-385 CrossRefGoogle Scholar
36. Herrero, A. and Barja, G. (1997) ADP-regulation of mitochondrial free radical production is different with complex I-or complex II-linked substrates: implications for the exercise paradox and brain hypermetabolism. Journal of Bioenergetics and Biomembranes 29, 241-249 CrossRefGoogle ScholarPubMed
37. Fridovich, I. (1995) Superoxide radical and superoxide dismutases. Annual Review of Biochemistry 64, 97-112 CrossRefGoogle ScholarPubMed
38. Irshad, M. and Chaudhuri, P. (2002) Oxidant-antioxidant system: role and significance in human body. Indian Journal of Experimental Biology 40, 1233-1239 Google ScholarPubMed
39. Bulteau, A.-L., Szweda, L.I. and Friguet, B. (2006) Mitochondrial protein oxidation and degradation in response to oxidative stress and aging. Experimental Gerontology 41, 653-657 CrossRefGoogle ScholarPubMed
40. Brown, W.M., George, M. and Wilson, A.C. (1979) Rapid evolution of animal mitochondrial DNA. Proceedings of the National Academy of Sciences of the United States of America 76, 1967-1971 CrossRefGoogle ScholarPubMed
41. Ito, T. et al. (1992) Mitochondrial DNA mutations in cardiomyopathy. Japanese Circulation Journal 56, 1045-1053 CrossRefGoogle ScholarPubMed
42. Michel, T.M., Pulschen, D. and Thome, J. (2012) The role of oxidative stress in depressive disorders. Current Pharmaceutical Design 18, 5890-5899 CrossRefGoogle ScholarPubMed
43. Michel, T.M. et al. (2014) Aldehyde dehydrogenase 2 in sporadic Parkinson's disease. Parkinsonism & Related Disorders 20 (Suppl 1), S68-S72 CrossRefGoogle ScholarPubMed
44. Duchen, M.R. (2004) Mitochondria in health and disease: perspectives on a new mitochondrial biology. Molecular Aspects of Medicine 25, 365-451 CrossRefGoogle ScholarPubMed
45. Puddu, P. et al. (2009) The emerging role of cardiovascular risk factor-induced mitochondrial dysfunction in atherogenesis. Journal of Biomedical Science 16, 1-9 CrossRefGoogle ScholarPubMed
46. Andreyev, A.Y., Kushnareva, Y.E. and Starkov, A.A. (2005) Mitochondrial metabolism of reactive oxygen species. Biochemistry (Moscow) 70, 200-214 CrossRefGoogle ScholarPubMed
47. Adam-Vizi, V. and Chinopoulos, C. (2006) Bioenergetics and the formation of mitochondrial reactive oxygen species. Trends in Pharmacological Sciences 27, 639-645 CrossRefGoogle ScholarPubMed
48. Calabrese, V. et al. (2007) Nitric oxide in the central nervous system: neuroprotection versus neurotoxicity. Nature Reviews Neuroscience 8, 766-775 CrossRefGoogle ScholarPubMed
49. Dawson, V.L. and Dawson, T.M. (1996) Nitric oxide neurotoxicity. Journal of Chemical Neuroanatomy 10, 179-190 CrossRefGoogle ScholarPubMed
50. Yan, W. et al. (2015) Acute nitrogen dioxide inhalation induces mitochondrial dysfunction in rat brain. Environmental Research 138, 416-424 CrossRefGoogle ScholarPubMed
51. Suleiman, M.-S., Halestrap, A. and Griffiths, E. (2001) Mitochondria: a target for myocardial protection. Pharmacology & Therapeutics 89, 29-46 CrossRefGoogle ScholarPubMed
52. Lesnefsky, E.J. et al. (2001) Mitochondrial dysfunction in cardiac disease: ischemia-reperfusion, aging, and heart failure. Journal of Molecular and Cellular Cardiology 33, 1065-1089 CrossRefGoogle ScholarPubMed
53. Nishigaki, Y. et al. (2007) Mitochondrial haplogroup A is a genetic risk factor for atherothrombotic cerebral infarction in Japanese females. Mitochondrion 7, 72-79 CrossRefGoogle ScholarPubMed
54. Takagi, K. et al. (2004) Association of a 5178C→ A (Leu237Met) polymorphism in the mitochondrial DNA with a low prevalence of myocardial infarction in Japanese individuals. Atherosclerosis 175, 281-286 CrossRefGoogle ScholarPubMed
55. Postnov, I. (2000) The role of mitochondrial calcium overload and energy deficiency in pathogenesis of arterial hypertension. Arkhiv Patologii 63, 3-10 Google Scholar
56. Chen, L., Tian, X. and Song, L. (1995) Biochemical and biophysical characteristics of mitochondria in the hypertrophic hearts from hypertensive rats. Chinese Medical Journal 108, 361-366 Google ScholarPubMed
57. Feigenbaum, A. et al. (1994) Premature atherosclerosis with photomyoclonic epilepsy, deafness, diabetes mellitus, nephropathy, and neurodegenerative disorder in two brothers: a new syndrome? American Journal of Medical Genetics 49, 118-124 CrossRefGoogle Scholar
58. Narula, J. et al. (1996) Apoptosis in myocytes in end-stage heart failure. New England Journal of Medicine 335, 1182-1189 CrossRefGoogle ScholarPubMed
59. Morrison, E.S. et al. (1977) Oxidative phosphorylation and aspects of calcium metabolism in myocardia of hypercholesterolaemic swine with moderate coronary atherosclerosis. Cardiovascular Research 11, 547-553 CrossRefGoogle ScholarPubMed
60. Massaeli, H. and Pierce, G.N. (1995) Involvement of lipoproteins, free radicals, and calcium in cardiovascular disease processes. Cardiovascular Research 29, 597-603 CrossRefGoogle ScholarPubMed
61. Dhalla, N.S., Temsah, R.M. and Netticadan, T. (2000) Role of oxidative stress in cardiovascular diseases. Journal of Hypertension 18, 655-673 CrossRefGoogle ScholarPubMed
62. Victor, V. et al. (2009) Oxidative stress and mitochondrial dysfunction in atherosclerosis: mitochondria-targeted antioxidants as potential therapy. Current Medicinal Chemistry 16, 4654-4667 CrossRefGoogle ScholarPubMed
63. Chen, Q. et al. (2003) Production of reactive oxygen species by mitochondria central role of complex III. Journal of Biological Chemistry 278, 36027-36031 CrossRefGoogle ScholarPubMed
64. Schleicher, E. and Friess, U. (2007) Oxidative stress, AGE, and atherosclerosis. Kidney International 72, S17-S26 CrossRefGoogle Scholar
65. Witztum, J.L. (1994) The oxidation hypothesis of atherosclerosis. The Lancet 344(8925), 793-795 CrossRefGoogle ScholarPubMed
66. Berliner, J.A. and Heinecke, J.W. (1996) The role of oxidized lipoproteins in atherogenesis. Free Radical Biology and Medicine 20, 707-727 CrossRefGoogle ScholarPubMed
67. Fong, L.G. et al. (1987) Nonenzymatic oxidative cleavage of peptide bonds in apoprotein B-100. Journal of Lipid Research 28, 1466-1477 CrossRefGoogle ScholarPubMed
68. Fruebis, J., Parthasarathy, S. and Steinberg, D. (1992) Evidence for a concerted reaction between lipid hydroperoxides and polypeptides. Proceedings of the National Academy of Sciences of the United States of America 89, 10588-10592 CrossRefGoogle ScholarPubMed
69. Parthasarathy, S. et al. (2010) Oxidized low-density lipoprotein. Methods in Molecular Biology (Clifton, NJ) 610, 403-417 CrossRefGoogle ScholarPubMed
70. Steinberg, D. et al. (1989) Beyond cholesterol. Modifications of low-density lipoprotein that increase its atherogenicity. New England Journal of Medicine 320, 915-924 Google ScholarPubMed
71. Finsterer, J. (2007) Is atherosclerosis a mitochondrial disorder? Vasa 36, 229-240 CrossRefGoogle ScholarPubMed
72. Ballinger, S.W. et al. (2002) Mitochondrial integrity and function in atherogenesis. Circulation 106, 544-549 CrossRefGoogle ScholarPubMed
73. Cheng, J. et al. (2007) Oxidized low-density lipoprotein stimulates p53-dependent activation of proapoptotic Bax leading to apoptosis of differentiated endothelial progenitor cells. Endocrinology 148, 2085-2094 CrossRefGoogle ScholarPubMed
74. Fleming, I. et al. (2005) Oxidized low-density lipoprotein increases superoxide production by endothelial nitric oxide synthase by inhibiting PKCalpha. Cardiovascular Research 65, 897-906 CrossRefGoogle ScholarPubMed
75. Clarke, M.C. et al. (2008) Chronic apoptosis of vascular smooth muscle cells accelerates atherosclerosis and promotes calcification and medial degeneration. Circulation Research 102, 1529-1538 CrossRefGoogle ScholarPubMed
76. Marin-Garcia, J., Goldenthal, M.J. and Moe, G.W. (2001) Mitochondrial pathology in cardiac failure. Cardiovascular Research 49, 17-26 CrossRefGoogle ScholarPubMed
77. Frias, M.A. et al. (2013) HDL protects against ischemia reperfusion injury by preserving mitochondrial integrity. Atherosclerosis 228, 110-116 CrossRefGoogle ScholarPubMed
78. Matsunaga, T. et al. (2001) Glycated high-density lipoprotein induces apoptosis of endothelial cells via a mitochondrial dysfunction. Biochemical and Biophysical Research Communications 287, 714-720 CrossRefGoogle Scholar
79. Grieve, D.J. et al. (2004) Role of oxidative stress in cardiac remodelling after myocardial infarction. Heart, Lung and Circulation 13, 132-138 CrossRefGoogle ScholarPubMed
80. Irani, K. et al. (1997) Mitogenic signaling mediated by oxidants in Ras-transformed fibroblasts. Science 275(5306), 1649-1652 CrossRefGoogle ScholarPubMed
81. Siwik, D.A., Pagano, P.J. and Colucci, W.S. (2001) Oxidative stress regulates collagen synthesis and matrix metalloproteinase activity in cardiac fibroblasts. American Journal of Physiology – Cell Physiology 280, C53-C60 CrossRefGoogle ScholarPubMed
82. Ide, T. et al. (1999) Mitochondrial electron transport complex I is a potential source of oxygen free radicals in the failing myocardium. Circulation Research 85, 357-363 CrossRefGoogle ScholarPubMed
83. Sims, N.R. and Muyderman, H. (2010) Mitochondria, oxidative metabolism and cell death in stroke. Biochimica et Biophysica Acta 1802, 80-91 CrossRefGoogle ScholarPubMed
84. Moro, M.A. et al. (2005) Mitochondrial respiratory chain and free radical generation in stroke. Free Radical Biology and Medicine 39, 1291-1304 CrossRefGoogle ScholarPubMed
85. Chan, P.H. (2005) Mitochondrial dysfunction and oxidative stress as determinants of cell death/survival in stroke. Annals of the New York Academy of Sciences 1042, 203-209 CrossRefGoogle ScholarPubMed
86. Schmitt, C.A. et al. (2002) Dissecting p53 tumor suppressor functions in vivo. Cancer Cell 1, 289-298 CrossRefGoogle ScholarPubMed
87. Miyashita, T. and Reed, J.C. (1995) Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell 80, 293-299 Google ScholarPubMed
88. Nakano, K. and Vousden, K.H. (2001) PUMA, a novel proapoptotic gene, is induced by p53. Molecular Cell 7, 683-694 CrossRefGoogle Scholar
89. Sugawara, T. et al. (2002) Overexpression of copper/zinc superoxide dismutase in transgenic rats protects vulnerable neurons against ischemic damage by blocking the mitochondrial pathway of caspase activation. The Journal of Neuroscience 22, 209-217 CrossRefGoogle ScholarPubMed
90. Sugawara, T. et al. (2002) Overexpression of SOD1 protects vulnerable motor neurons after spinal cord injury by attenuating mitochondrial cytochrome c release. The FASEB Journal 16, 1997-1999 CrossRefGoogle ScholarPubMed
91. Fujimura, M. et al. (1999) Copper-zinc superoxide dismutase prevents the early decrease of apurinic/apyrimidinic endonuclease and subsequent DNA fragmentation after transient focal cerebral ischemia in mice. Stroke 30, 2408-2415 CrossRefGoogle ScholarPubMed
92. Saito, A. et al. (2004) Oxidative stress is associated with XIAP and Smac/DIABLO signaling pathways in mouse brains after transient focal cerebral ischemia. Stroke 35, 1443-1448 CrossRefGoogle ScholarPubMed
93. Sims, N.R. and Anderson, M.F. (2002) Mitochondrial contributions to tissue damage in stroke. Neurochemistry International 40, 511-526 CrossRefGoogle ScholarPubMed
94. Murakami, K., Kondo, T. and Chan, P.H. (1997) Reperfusion following focal cerebral ischemia alters distribution of neuronal cells with DNA fragmentation in mice. Brain Research 751, 160-164 CrossRefGoogle ScholarPubMed
95. Li, Y. et al. (1995) Induction of DNA fragmentation after 10 to 120 minutes of focal cerebral ischemia in rats. Stroke 26, 1252-1258 CrossRefGoogle ScholarPubMed
96. De la Pena, P. et al. (2001) Mitochondrial dysfunction associated with a mutation in the Notch3 gene in a CADASIL family. Neurology 57, 1235-1238 CrossRefGoogle Scholar
97. Yuan, J. (2009) Neuroprotective strategies targeting apoptotic and necrotic cell death for stroke. Apoptosis: an International Journal on Programmed Cell Death 14, 469-477 CrossRefGoogle ScholarPubMed
98. Manzanero, S., Santro, T. and Arumugam, T.V. (2013) Neuronal oxidative stress in acute ischemic stroke: sources and contribution to cell injury. Neurochemistry International 62, 712-718 CrossRefGoogle ScholarPubMed
99. Syntichaki, P. and Tavernarakis, N. (2003) The biochemistry of neuronal necrosis: rogue biology? Nature Reviews Neuroscience 4, 672-684 CrossRefGoogle ScholarPubMed
100. Bergers, G. and Song, S. (2005) The role of pericytes in blood-vessel formation and maintenance. Neuro-Oncology 7, 452-464 CrossRefGoogle ScholarPubMed
101. del Zoppo, G.J. (2009) Inflammation and the neurovascular unit in the setting of focal cerebral ischemia. Neuroscience 158, 972-982 CrossRefGoogle ScholarPubMed
102. Moskowitz, M.A., Lo, E.H. and Iadecola, C. (2010). The science of stroke: mechanisms in search of treatments. Neuron 67, 181-198 CrossRefGoogle ScholarPubMed
103. Dirnagl, U., Iadecola, C. and Moskowitz, M.A. (1999). Pathobiology of ischaemic stroke: an integrated view. Trends in Neurosciences 22, 391-397 CrossRefGoogle ScholarPubMed
104. Wang, X. et al. (2014) Physical exercise training and neurovascular unit in ischemic stroke. Neuroscience 271, 99-107 CrossRefGoogle ScholarPubMed
105. Armulik, A. et al. (2010) Pericytes regulate the blood-brain barrier. Nature 468, 557-561 CrossRefGoogle ScholarPubMed
106. Andalib, S. et al. (2016) MtDNA T4216C variation in multiple sclerosis: a systematic review and meta-analysis. Acta Neurologica Belgica 116, 439-443 CrossRefGoogle ScholarPubMed
107. Bliksøen, M. et al. (2012) Increased circulating mitochondrial DNA after myocardial infarction. International Journal of Cardiology 158, 132-134 CrossRefGoogle ScholarPubMed
108. Wang, L. et al. (2015) Plasma nuclear and mitochondrial DNA levels in acute myocardial infarction patients. Coronary Artery Disease 26, 296-300 CrossRefGoogle ScholarPubMed
109. Golomb, B.A. (2012) Oxidative Stress and Mitochondrial Injury in Chronic Multisymptom Conditions: From Gulf War Illness to Autism Spectrum Disorder. Nature precedings, 10101/npre.2012.6847.1CrossRefGoogle Scholar
110. Yemisci, M. et al. (2009) Pericyte contraction induced by oxidative-nitrative stress impairs capillary reflow despite successful opening of an occluded cerebral artery. Nature Medicine 15, 1031-1037 CrossRefGoogle ScholarPubMed
111. O'Farrell, F.M. and Attwell, D. (2014) A role for pericytes in coronary no-reflow. Nature Reviews Cardiology 11, 427-432 CrossRefGoogle ScholarPubMed
112. Casalone, R. et al. (1991) Cytogenetic analysis reveals clonal proliferation of smooth muscle cells in atherosclerotic plaques. Human Genetics 87, 139-143 CrossRefGoogle ScholarPubMed
113. Vanni, R., Cossu, L. and Licheri, S. (1990) Atherosclerotic plaque as a benign tumor? Cancer Genetics and Cytogenetics 47, 273-274 CrossRefGoogle ScholarPubMed
114. Matturri, L. et al. (2001) Chromosomal alterations in atherosclerotic plaques. Atherosclerosis 154, 755-761 CrossRefGoogle ScholarPubMed
115. Spandidos, D. et al. (1996) Microsatellite instability in human atherosclerotic plaques. Biochemical and Biophysical Research Communications 220, 137-140 CrossRefGoogle ScholarPubMed
116. Kiaris, H. et al. (1995) Mutations, expression and genomic instability of the H-ras proto-oncogene in squamous cell carcinomas of the head and neck. British Journal of Cancer 72, 123-128 CrossRefGoogle ScholarPubMed
117. McCaffrey, T.A. et al. (1997) Genomic instability in the type II TGF-beta1 receptor gene in atherosclerotic and restenotic vascular cells. Journal of Clinical Investigation 100, 2182-2188 CrossRefGoogle ScholarPubMed
118. Flouris, G.A. et al. (2000) Loss of heterozygosity in DNA mismatch repair genes in human atherosclerotic plaques. Molecular Cell Biology Research Communications 4, 62-65 CrossRefGoogle ScholarPubMed
119. Grati, F.R. et al. (2001) Loss of heterozygosity of the NOS3 dinucleotide repeat marker in atherosclerotic plaques of human carotid arteries. Atherosclerosis 159, 261-267 CrossRefGoogle ScholarPubMed
120. Izzotti, A. et al. (2001) Increased DNA alterations in atherosclerotic lesions of individuals lacking the GSTM1 genotype. The FASEB Journal 15, 752-757 CrossRefGoogle ScholarPubMed
121. Van Schooten, F.J. et al. (1998) Putative susceptibility markers of coronary artery disease: association between VDR genotype, smoking, and aromatic DNA adduct levels in human right atrial tissue. FASEB Journal 12, 1409-1417 CrossRefGoogle ScholarPubMed
122. Gackowski, D. et al. (2001) Further evidence that oxidative stress may be a risk factor responsible for the development of atherosclerosis. Free Radical Biology and Medicine 31, 542-547 CrossRefGoogle ScholarPubMed
123. Andalib, S. et al. (2013) Association of polymorphism of Ser311cys Paraoxonase-2 gene with type 2 diabetes mellitus in Iran. International Journal of Preventive Medicine 4, 517-522 Google ScholarPubMed
124. Motavallian, A. et al. (2013) Association between PRO12ALA polymorphism of the PPAR-γ2 gene and type 2 diabetes mellitus in Iranian patients. Indian Journal of Human Genetics 19, 239-244 Google ScholarPubMed
125. Jo, S.A. et al. (2007) A Glu487Lys polymorphism in the gene for mitochondrial aldehyde dehydrogenase 2 is associated with myocardial infarction in elderly Korean men. Clinica Chimica Acta 382, 43-47 CrossRefGoogle ScholarPubMed
126. Yamada, Y. et al. (2002) Prediction of the risk of myocardial infarction from polymorphisms in candidate genes. New England Journal of Medicine 347, 1916-1923 CrossRefGoogle ScholarPubMed
127. Ye, L. et al. (1997) Association of a polymorphic variant of the Werner helicase gene with myocardial infarction in a Japanese population. American Journal of Medical Genetics 68, 494-498 3.0.CO;2-L>CrossRefGoogle Scholar
128. Meschia, J.F. (2011) Advances in genetics 2010. Stroke 42, 285-287 CrossRefGoogle ScholarPubMed
129. Dichgans, M. (2007) Genetics of ischaemic stroke. The Lancet Neurology 6, 149-161 CrossRefGoogle ScholarPubMed
130. Natowicz, M. and Kelley, R.I. (1987) Mendelian etiologies of stroke. Annals of Neurology 22, 175-192 CrossRefGoogle ScholarPubMed
131. Mudd, S.H. et al. (1985) The natural history of homocystinuria due to cystathionine β-synthase deficiency. American Journal of Human Genetics 37, 1-31 Google ScholarPubMed
132. Third, J.L. et al. (1984) Primary and familial hypoalphalipoproteinemia. Metabolism 33, 136-146 CrossRefGoogle ScholarPubMed
133. Vomberg, P. et al. (1987) Cerebral thromboembolism due to antithrombin III deficiency in two children. Neuropediatrics 18, 42-44 CrossRefGoogle ScholarPubMed
134. Dahlbäck, B., Carlsson, M. and Svensson, P.J. (1993) Familial thrombophilia due to a previously unrecognized mechanism characterized by poor anticoagulant response to activated protein C: prediction of a cofactor to activated protein C. Proceedings of the National Academy of Sciences of the United States of America 90, 1004-1008 CrossRefGoogle ScholarPubMed
135. De Lucia, D. et al. (1997) Activated protein C resistance due to a factor V mutation associated with familial ischemic stroke. Journal of Neurosurgical Sciences 41, 373-378 Google ScholarPubMed
136. De Stefano, V. et al. (1998) Prothrombin G20210A mutant genotype is a risk factor for cerebrovascular ischemic disease in young patients. Blood 91, 3562-3565 CrossRefGoogle ScholarPubMed
137. Carter, A.M. et al. (1997) Gender-specific associations of the fibrinogen Bβ 448 polymorphism, fibrinogen levels, and acute cerebrovascular disease. Arteriosclerosis, Thrombosis, and Vascular Biology 17, 589-594 CrossRefGoogle Scholar
138. Carter, A. et al. (1998) Platelet GP IIIa PlA and GP Ib variable number tandem repeat polymorphisms and markers of platelet activation in acute stroke. Arteriosclerosis, Thrombosis, and Vascular Biology 18, 1124-1131 CrossRefGoogle ScholarPubMed
139. Gonzalez-Conejero, R. et al. (1998) Polymorphisms of platelet membrane glycoprotein Ib associated with arterial thrombotic disease. Blood 92, 2771-2776 CrossRefGoogle ScholarPubMed
140. Carlsson, L.E. et al. (1997) Polymorphisms of the human platelet antigens HPA-1, HPA-2, HPA-3, and HPA-5 on the platelet receptors for fibrinogen (GPIIb/IIIa), von Willebrand factor (GPIb/IX), and collagen (GPIa/IIa) are not correlated with an increased risk for stroke. Stroke 28, 1392-1395 CrossRefGoogle Scholar
141. Sharma, P. (1998) Meta-analysis of the ACE gene in ischaemic stroke. Journal of Neurology, Neurosurgery & Psychiatry 64, 227-230 CrossRefGoogle ScholarPubMed
142. Margaglione, M. et al. (1998) Prevalence of apolipoprotein E alleles in healthy subjects and survivors of ischemic stroke an Italian case-control study. Stroke 29, 399-403 CrossRefGoogle ScholarPubMed
143. Patsch, W. et al. (1994) Associations of allelic differences at the AI/C-III/A-IV gene cluster with carotid artery intima-media thickness and plasma lipid transport in hypercholesterolemic-hypertriglyceridemic humans. Arteriosclerosis, Thrombosis, and Vascular Biology 14, 874-883 CrossRefGoogle Scholar
144. Awadalla, P., Eyre-Walker, A. and Smith, J.M. (1999) Linkage disequilibrium and recombination in hominid mitochondrial DNA. Science 286, 2524-2525 CrossRefGoogle ScholarPubMed
145. Chinnery, P.F. and Schon, E.A. (2003) Mitochondria. Journal of Neurology Neurosurgery & Psychiatry 74, 1188-1199 CrossRefGoogle ScholarPubMed
146. Giles, R.E. et al. (1980) Maternal inheritance of human mitochondrial DNA. Proceedings of the National Academy of Sciences of the United States of America 77, 6715-6719 CrossRefGoogle ScholarPubMed
147. Gu, M. et al. (1998) Mitochondrial DNA transmission of the mitochondrial defect in Parkinson's disease. Annals of Neurology 44, 177-186 CrossRefGoogle ScholarPubMed
148. Hayakawa, M. et al. (1993) Age-associated damage in mitochondrial DNA in human hearts. Molecular and Cellular Biochemistry 119, 95-103 CrossRefGoogle ScholarPubMed
149. Lertrit, P. et al. (1994) Mitochondrial DNA polymorphism in disease: a possible contributor to respiratory dysfunction. Human molecular Genetics 3, 1973-1981 CrossRefGoogle ScholarPubMed
150. Ramachandran, A. et al. (2002) Mitochondria, nitric oxide, and cardiovascular dysfunction. Free Radical Biology and Medicine 33, 1465-1474 CrossRefGoogle ScholarPubMed
151. Ferrari, R. (1996) The role of mitochondria in ischemic heart disease. Journal of Cardiovascular Pharmacology 28(Suppl 1), S1-10 Google ScholarPubMed
152. Ballinger, S.W. et al. (2000) Hydrogen peroxide–and peroxynitrite-induced mitochondrial DNA damage and dysfunction in vascular endothelial and smooth muscle cells. Circulation Research 86, 960-966 CrossRefGoogle ScholarPubMed
153. Luft, R. and Landau, B. (1995) Mitochondrial medicine. Journal of Internal Medicine 238, 405-421 CrossRefGoogle ScholarPubMed
154. Tokoro, T., Ito, H. and Suzuki, T. (1996) Alterations in mitochondrial DNA and enzyme activities in hypertrophied myocardium of stroke-prone SHRS. Clinical and Experimental Hypertension 18, 595-606 CrossRefGoogle ScholarPubMed
155. Garnier, A. et al. (2003) Depressed mitochondrial transcription factors and oxidative capacity in rat failing cardiac and skeletal muscles. The Journal of Physiology 551, 491-501 CrossRefGoogle ScholarPubMed
156. Ide, T. et al. (2001) Mitochondrial DNA damage and dysfunction associated with oxidative stress in failing hearts after myocardial infarction. Circulation Research 88, 529-535 CrossRefGoogle ScholarPubMed
157. Tsutsui, H., Ide, T. and Kinugawa, S. (2006) Mitochondrial oxidative stress, DNA damage, and heart failure. Antioxidants & Redox Signaling 8, 1737-1744 CrossRefGoogle ScholarPubMed
158. Tsutsui, H., Kinugawa, S. and Matsushima, S. (2009) Mitochondrial oxidative stress and dysfunction in myocardial remodelling. Cardiovascular Research 81, 449-456 CrossRefGoogle ScholarPubMed
159. Suematsu, N. et al. (2003) Oxidative stress mediates tumor necrosis factor-α–induced mitochondrial DNA damage and dysfunction in cardiac myocytes. Circulation 107, 1418-1423 CrossRefGoogle ScholarPubMed
160. Ikeuchi, M. et al. (2005) Overexpression of mitochondrial transcription factor a ameliorates mitochondrial deficiencies and cardiac failure after myocardial infarction. Circulation 112, 683-690 CrossRefGoogle ScholarPubMed
161. Zhang, D. et al. (2003) Mitochondrial DNA mutations activate the mitochondrial apoptotic pathway and cause dilated cardiomyopathy. Cardiovascular Research 57, 147-157 CrossRefGoogle ScholarPubMed
162. Vilarinho, L. et al. (1997) The mitochondrial A3243G mutation presenting as severe cardiomyopathy. Journal of Medical Genetics 34, 607-609 CrossRefGoogle ScholarPubMed
163. Silvestri, G. et al. (1994) A new mtDNA mutation in the tRNALeu (UUR) gene associated with maternally inherited cardiomyopathy. Human Mutation 3, 37-43 CrossRefGoogle ScholarPubMed
164. Zifa, E. et al. (2008) A novel G3337A mitochondrial ND1 mutation related to cardiomyopathy co-segregates with tRNALeu (CUN) A12308G and tRNA Thr C15946T mutations. Mitochondrion 8, 229-236 CrossRefGoogle ScholarPubMed
165. Botto, N. et al. (2005) Detection of mtDNA with 4977 bp deletion in blood cells and atherosclerotic lesions of patients with coronary artery disease. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 570, 81-88 CrossRefGoogle ScholarPubMed
166. Corral-Debrinski, M. et al. (1992) Association of mitochondrial DNA damage with aging and coronary atherosclerotic heart disease. Mutation Research/DNAging 275, 169-180 CrossRefGoogle ScholarPubMed
167. Matsunaga, H. et al. (2001) Antiatherogenic mitochondrial genotype in patients with type 2 diabetes. Diabetes Care 24, 500-503 CrossRefGoogle ScholarPubMed
168. Mukae, S. et al. (2003) Mitochondrial 5178A/C genotype is associated with acute myocardial infarction. Circulation Journal: Official Journal of the Japanese Circulation Society 67, 16-20 CrossRefGoogle ScholarPubMed
169. Palacín, M. et al. (2011) Mitochondrial DNA and TFAM gene variation in early-onset myocardial infarction: evidence for an association to haplogroup H. Mitochondrion 11, 176-181 CrossRefGoogle ScholarPubMed
170. Mueller, E.E. et al. (2011) The mitochondrial T16189C polymorphism is associated with coronary artery disease in Middle European populations. PLoS ONE 6, e16455 CrossRefGoogle ScholarPubMed
171. Takeda, N. et al. (1993) Mitochondrial DNA deletion in human myocardium. Molecular and Cellular Biochemistry 119, 105-108 CrossRefGoogle ScholarPubMed
172. Takeda, N. (1997) Cardiomyopathies and mitochondrial DNA mutations. In (Eds: Singal, P.K., Panagia, V., and Pierce, G.N.) The Cellular Basis of Cardiovascular Function in Health and Disease, pp. 287-290. Springer, Boston.CrossRefGoogle Scholar
173. Benn, M. et al. (2008) Mitochondrial haplogroups ischemic cardiovascular disease, other diseases, mortality, and longevity in the general population. Circulation 117, 2492-2501 CrossRefGoogle ScholarPubMed
174. Nishigaki, Y. et al. (2007) Mitochondrial haplogroup N9b is protective against myocardial infarction in Japanese males. Human Genetics 120, 827-836 CrossRefGoogle ScholarPubMed
175. Kofler, B. et al. (2009) Mitochondrial DNA haplogroup T is associated with coronary artery disease and diabetic retinopathy: a case control study. BMC Medical Genetics 10, 35 CrossRefGoogle ScholarPubMed
176. Tsai, N.-W. et al. (2011) The value of serial plasma nuclear and mitochondrial DNA levels in patients with acute ischemic stroke. Clinica Chimica Acta 412, 476-479 CrossRefGoogle ScholarPubMed
177. Yen, M.-Y. et al. (2002) Leber's hereditary optic neuropathy—the spectrum of mitochondrial DNA mutations in Chinese patients. Japanese Journal of Ophthalmology 46, 45-51 CrossRefGoogle ScholarPubMed
178. Johns, D.R., Neufeld, M.J. and Park, R.D. (1992) An ND-6 mitochondrial DNA mutation associated with Leber hereditary optic neuropathy. Biochemical and Biophysical Research Communications 187, 1551-1557 CrossRefGoogle ScholarPubMed
179. Shoffner, J.M. et al. (1990) Myoclonic epilepsy and ragged-red fiber disease (MERRF) is associated with a mitochondrial DNA tRNA Lys mutation. Cell 61, 931-937 CrossRefGoogle ScholarPubMed
180. Silvestri, G. et al. (1992) A new mtDNA mutation in the tRNA (Lys) gene associated with myoclonic epilepsy and ragged-red fibers (MERRF). American Journal of Human Genetics 51, 1213-1217 Google ScholarPubMed
181. Carod-Artal, F. et al. (2006) Mitochondrial DNA deletions in Kearns-Sayre syndrome. Neurologia (Barcelona, Spain) 21, 357-364 Google ScholarPubMed
182. Nelson, I. et al. (1988) Nucleotide mapping and a kinetic model of a heteroplasmic deletion of 4,666 base pairs from mitochondrial DNA in the Kearns-Sayre syndrome. Comptes rendus de l'Academie des sciences. Serie III, Sciences de la vie 309, 403-407 Google Scholar
183. de la Monte, S.M. et al. (2000) Mitochondrial DNA damage as a mechanism of cell loss in Alzheimer's disease. Laboratory Investigation 80, 1323-1335 CrossRefGoogle ScholarPubMed
184. Corral-Debrinski, M. et al. (1994) Marked changes in mitochondrial DNA deletion levels in Alzheimer brains. Genomics 23, 471-476 CrossRefGoogle ScholarPubMed
185. Andalib, S., Vafaee, M.S. and Gjedde, A. (2014) Parkinson's disease and mitochondrial gene variations: a review. Journal of the Neurological Sciences 346, 11-19 CrossRefGoogle ScholarPubMed
186. Autere, J. et al. (2004) Mitochondrial DNA polymorphisms as risk factors for Parkinson's disease and Parkinson's disease dementia. Human Genetics 115, 29-35 Google ScholarPubMed
187. Andalib, S. et al. (2013) Multiple sclerosis and mitochondrial gene variations: a review. Journal of the Neurological Sciences 330, 10-15 CrossRefGoogle ScholarPubMed
188. Andalib, S. et al. (2015) Lack of association between mitochondrial DNA G15257A and G15812A variations and multiple sclerosis. Journal of the Neurological Sciences 356, 102-106 CrossRefGoogle ScholarPubMed
189. Andalib, S. et al. (2015) Mitochondrial DNA T4216C and A4917G variations in Multiple Sclerosis. Journal of the Neurological Sciences 356, 55-60 CrossRefGoogle ScholarPubMed
190. Andalib, S. et al. (2017) Mitochondrial DNA G13708A Variation and Multiple Sclerosis: Is there an association? Revue Neurologique. http://dx.doi.org/10.1016/j.neurol.2017.02.002 (In press)CrossRefGoogle Scholar
191. Chinnery, P.F. et al. (2010) Mitochondrial DNA haplogroups and risk of transient ischaemic attack and ischaemic stroke: a genetic association study. The Lancet Neurology 9, 498-503 CrossRefGoogle ScholarPubMed
192. Rosa, A. et al. (2008) Mitochondrial haplogroup H1 is protective for ischemic stroke in Portuguese patients. BMC Medical Genetics 9, 57 CrossRefGoogle ScholarPubMed
193. Anderson, C.D. et al. (2011) Common mitochondrial sequence variants in ischemic stroke. Annals of Neurology 69, 471-480 CrossRefGoogle ScholarPubMed
194. Liou, C.W. et al. (2004) Association of the mitochondrial DNA 16189T to C variant with lacunar cerebral infarction: evidence from a hospital-based case-control study. Annals of the New York Academy of Sciences 1011, 317-324 CrossRefGoogle Scholar
195. Majamaa, K. et al. (1997) The common MELAS mutation A3243G in mitochondrial DNA among young patients with an occipital brain infarct. Neurology 49, 1331-1334 CrossRefGoogle ScholarPubMed
196. Finnilä, S., Hassinen, I.E. and Majamaa, K. (2001) Phylogenetic analysis of mitochondrial DNA in patients with an occipital stroke: evaluation of mutations by using sequence data on the entire coding region. Mutation Research/Mutation Research Genomics 458, 31-39 CrossRefGoogle ScholarPubMed
197. Martinez-Fernandez, E. et al. (2001) Mitochondrial disease and stroke. Stroke 32, 2507-2510 CrossRefGoogle ScholarPubMed
198. Cao, G. et al. (2002) In vivo delivery of a Bcl-xL fusion protein containing the TAT protein transduction domain protects against ischemic brain injury and neuronal apoptosis. Journal of Neuroscience 22, 5423-5431 CrossRefGoogle ScholarPubMed
199. Gronbeck, K.R. et al. (2016) Application of tauroursodeoxycholic acid for treatment of neurological and non-neurological diseases: is there a potential for treating traumatic brain injury? Neurocritical Care 25, 153-166 CrossRefGoogle Scholar
200. Orrenius, S. (2004) Mitochondrial regulation of apoptotic cell death. Toxicology Letters 149, 19-23 CrossRefGoogle ScholarPubMed
201. Rodrigues, C.M. et al. (1999) Ursodeoxycholic acid prevents cytochrome c release in apoptosis by inhibiting mitochondrial membrane depolarization and channel formation. Cell Death and Differentiation 6, 842-854 CrossRefGoogle ScholarPubMed
202. Rodrigues, C.M. et al. (2003) Tauroursodeoxycholic acid reduces apoptosis and protects against neurological injury after acute hemorrhagic stroke in rats. Proceedings of the National Academy of Sciences of the United States of America 100, 6087-6092 CrossRefGoogle ScholarPubMed
203. Rivard, A.L. et al. (2007) Administration of tauroursodeoxycholic acid (TUDCA) reduces apoptosis following myocardial infarction in rat. American Journal of Chinese Medicine 35, 279-295 CrossRefGoogle ScholarPubMed
204. Elia, A.E. et al. (2016) Tauroursodeoxycholic acid in the treatment of patients with amyotrophic lateral sclerosis. European Journal of Neurology 23, 45-52 CrossRefGoogle ScholarPubMed