Hostname: page-component-7479d7b7d-c9gpj Total loading time: 0 Render date: 2024-07-08T21:56:54.199Z Has data issue: false hasContentIssue false

Norovirus–host interaction: implications for disease control and prevention

Published online by Cambridge University Press:  11 July 2007

Ming Tan
Affiliation:
Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, USA.
Xi Jiang*
Affiliation:
Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, USA.
*
*Corresponding author: Xi Jiang, Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, 3333 Burnet Ave, Cincinnati, OH45229-3039, USA. Tel: +1 513 636 0119; Fax: +1 513 636 7655; E-mail: jason.jiang@cchmc.org

Abstract

Noroviruses (NVs) are a major cause of acute gastroenteritis epidemics in both developing and developed countries and affect people of all ages. Three main human histo-blood group antigens (HBGAs) – the ABO, Lewis and secretor families – are involved in NV recognition and eight strain-specific receptor-binding patterns in two major binding groups have been described. The receptor-binding interface is located at the outermost surface of the P domain of the viral capsid. Each interface contains two major binding sites and each site interacts with a carbohydrate side-chain of the HBGAs via multiple hydrogen bonds. Soluble HBGAs in human milk are able to block binding of NV to HBGA receptors, suggesting a potential decoy receptor for the protection of infants from NV infection. Phylogenetic analysis has revealed limited genetic relatedness among NVs with similar receptor-binding patterns. This review summarises and discusses recent advances and highlights implications for future studies in the control and prevention of NV gastroenteritis.

Type
Review Article
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

1Green, K.Y. et al. (2000) Taxonomy of the caliciviruses. J Infect Dis 181 Suppl 2, S322-330CrossRefGoogle ScholarPubMed
2Adler, J. and Zickl, R. (1969) Winter vomiting disease. J Infect Dis 119, 668-673CrossRefGoogle ScholarPubMed
3Dolin, R. et al. (1972) Biological properties of Norwalk agent of acute infectious nonbacterial gastroenteritis. Proc Soc Exp Biol Med 140, 578-583CrossRefGoogle ScholarPubMed
4Dolin, R. et al. (1971) Transmission of acute infectious nonbacterial gastroenteritis to volunteers by oral administration of stool filtrates. J Infect Dis 123, 307-312CrossRefGoogle ScholarPubMed
5Kapikian, A.Z. et al. (1973) Density in cesium chloride of the 27 nm “8FIIa” particle associated with acute infectious nonbacterial gastroenteritis: determination by ultra-centrifugation and immune electron microscopy. Proc Soc Exp Biol Med 142, 874-877CrossRefGoogle ScholarPubMed
6Kapikian, A., Estes, M.K. and Chanock, R.M. (1996) Norwalk group of viruses. In Fields Virology (3rd edn) (Fields, B.N. et al. , eds), pp. 783-810, Lippincott-Raven, New YorkGoogle Scholar
7Zheng, D.P. et al. (2006) Norovirus classification and proposed strain nomenclature. Virology 346, 312-323Google Scholar
8Parrino, T.A. et al. (1977) Clinical immunity in acute gastroenteritis caused by Norwalk agent. N Engl J Med 297, 86-89CrossRefGoogle ScholarPubMed
9Thornhill, T.S. et al. (1975) Pattern of shedding of the Norwalk particle in stools during experimentally induced gastroenteritis in volunteers as determined by immune electron microscopy. J Infect Dis 132, 28-34CrossRefGoogle ScholarPubMed
10Wyatt, R.G. et al. (1974) Comparison of three agents of acute infectious nonbacterial gastroenteritis by cross-challenge in volunteers. J Infect Dis 129, 709-714CrossRefGoogle ScholarPubMed
11Gallimore, C.I. et al. (2004) Diversity of enteric viruses detected in patients with gastroenteritis in a tertiary referral paediatric hospital. J Med Virol 73, 443-449CrossRefGoogle Scholar
12Kaufman, S.S. et al. (2005) Characteristics of human calicivirus enteritis in intestinal transplant recipients. J Pediatr Gastroenterol Nutr 40, 328-333CrossRefGoogle ScholarPubMed
13Simon, A. et al. (2006) Norovirus outbreak in a pediatric oncology unit. Scand J Gastroenterol 41, 693-699CrossRefGoogle Scholar
14Mattner, F. et al. (2006) Risk groups for clinical complications of norovirus infections: an outbreak investigation. Clin Microbiol Infect 12, 69-74CrossRefGoogle ScholarPubMed
15Jiang, X. et al. (1996) Outbreaks of gastroenteritis in elderly nursing homes and retirement facilities associated with human caliciviruses. J Med Virol 50, 335-3413.0.CO;2-9>CrossRefGoogle ScholarPubMed
16Green, K.Y. et al. (2002) A predominant role for Norwalk-like viruses as agents of epidemic gastroenteritis in Maryland nursing homes for the elderly. J Infect Dis 185, 133-146CrossRefGoogle ScholarPubMed
17Tsugawa, T. et al. (2006) Virological, serological, and clinical features of an outbreak of acute gastroenteritis due to recombinant genogroup II norovirus in an infant home. J Clin Microbiol 44, 177-182Google Scholar
18Isakbaeva, E.T. et al. (2005) Norovirus and child care: challenges in outbreak control. Pediatr Infect Dis J 24, 561-563Google Scholar
19Isakbaeva, E.T. et al. (2005) Norovirus transmission on cruise ship. Emerg Infect Dis 11, 154-158CrossRefGoogle ScholarPubMed
20Koopmans, M. (2005) Food-borne norovirus outbreaks: a nuisance or more than that? Wien Klin Wochenschr 117, 789-791CrossRefGoogle ScholarPubMed
21Morioka, S. et al. (2006) A food-borne norovirus outbreak at a primary school in Wakayama Prefecture. Jpn J Infect Dis 59, 205-207CrossRefGoogle Scholar
22Papadopoulos, V.P. et al. (2006) A gastroenteritis outbreak due to Norovirus infection in Xanthi, Northern Greece: management and public health consequences. J Gastrointestin Liver Dis 15, 27-30Google ScholarPubMed
23Podewils, L.J. et al. (2006) Outbreak of norovirus illness associated with a swimming pool. Epidemiol Infect 134, 1-7Google Scholar
24Sistrom, M.G. and Hale, P.J. (2006) Outbreak investigations: community participation and role of community and public health nurses. Public Health Nurs 23, 256-263CrossRefGoogle ScholarPubMed
25Takkinen, J. (2006) Recent norovirus outbreaks on river and seagoing cruise ships in Europe. Euro Surveill 11, E0606152Google Scholar
26Thornton, A.C., Jennings-Conklin, K.S. and McCormick, M.I. (2004) Noroviruses: agents in outbreaks of acute gastroenteritis. Disaster Manag Response 2, 4-9Google Scholar
27Tseng, F.C. et al. (2007) Molecular epidemiology of norovirus gastroenteritis outbreaks in North Carolina, United States: 1995–2000. J Med Virol 79, 84-91Google Scholar
28Vainio, K. and Myrmel, M. (2006) Molecular Epidemiology of norovirus outbreaks in Norway during 2000 to 2005 and comparison of four norovirus real-time reverse transcriptase PCR assays. J Clin Microbiol 44, 3695-3702CrossRefGoogle ScholarPubMed
29Waters, A. et al. (2006) Molecular epidemiology of norovirus strains circulating in Ireland from 2003 to 2004. Epidemiol Infect 134, 917-925CrossRefGoogle ScholarPubMed
30Greenberg, H.B. et al. (1979) Antibodies to viral gastroenteritis viruses in Crohn's disease. Gastroenterology 76, 349-350CrossRefGoogle ScholarPubMed
31Kapikian, A., Yolken, R. and Greenberg, H. (1979) Gastroenteritis viruses. In Diagnostic Procedures for Viral, Rickettsial, and Chlamydial Infections 5th edn (Lennette, E.Schmidt, N., eds), pp. 927-995, American Public Health Association, Washington, DCGoogle Scholar
32Black, R.E. et al. (1982) Acquisition of serum antibody to Norwalk Virus and rotavirus and relation to diarrhea in a longitudinal study of young children in rural Bangladesh. J Infect Dis 145, 483-489CrossRefGoogle Scholar
33Ryder, R.W. et al. (1985) Evidence of immunity induced by naturally acquired rotavirus and Norwalk virus infection on two remote Panamanian islands. J Infect Dis 151, 99-105CrossRefGoogle ScholarPubMed
34Straub, T. et al. (2007) In vitro cell culture infectivity assay for human noroviruses. Emerg Infect Dis 13, 8Google Scholar
35Cheetham, S. et al. (2006) Pathogenesis of a genogroup II human norovirus in gnotobiotic pigs. J Virol 80, 10372-10381CrossRefGoogle ScholarPubMed
36Jiang, X. et al. (1990) Norwalk virus genome cloning and characterization. Science 250, 1580-1583Google Scholar
37Matson, D.O. et al. (1995) Molecular characterization of a human calicivirus with sequence relationships closer to animal caliciviruses than other known human caliciviruses. J Med Virol 45, 215-222CrossRefGoogle ScholarPubMed
38Matson, D.O. et al. (1996) Partial characterization of the genome of nine animal caliciviruses. Arch Virol 141, 2443-2456CrossRefGoogle ScholarPubMed
39Lew, J.F. et al. (1994) Identification of minireovirus as a Norwalk-like virus in pediatric patients with gastroenteritis. J Virol 68, 3391-3396CrossRefGoogle ScholarPubMed
40Lew, J.F. et al. (1994) Molecular characterization of Hawaii virus and other Norwalk-like viruses: evidence for genetic polymorphism among human caliciviruses. J Infect Dis 170, 535-542CrossRefGoogle ScholarPubMed
41Lew, J.F. et al. (1994) Molecular characterization and expression of the capsid protein of a Norwalk-like virus recovered from a Desert Shield troop with gastroenteritis. Virology 200, 319-325Google Scholar
42Lambden, P.R. et al. (1993) Sequence and genome organization of a human small round-structured (Norwalk-like) virus. Science 259, 516-519Google Scholar
43Jiang, X. et al. (1995) Study of Norwalk-related viruses in Mexican children. J Med Virol 47, 309-316Google Scholar
44Jiang, X. et al. (1999) Expression and characterization of Sapporo-like human calicivirus capsid proteins in baculovirus. J Virol Methods 78, 81-91Google Scholar
45Jiang, X. et al. (1992) Expression, self-assembly, and antigenicity of the Norwalk virus capsid protein. J Virol 66, 6527-6532CrossRefGoogle ScholarPubMed
46Jiang, X. et al. (1995) Expression, self-assembly, and antigenicity of a snow mountain agent-like calicivirus capsid protein. J Clin Microbiol 33, 1452-1455CrossRefGoogle ScholarPubMed
47Green, K.Y. et al. (1993) Comparison of the reactivities of baculovirus-expressed recombinant Norwalk virus capsid antigen with those of the native Norwalk virus antigen in serologic assays and some epidemiologic observations. J Clin Microbiol 31, 2185-2191Google Scholar
48White, L.J. et al. (1996) Attachment and entry of recombinant Norwalk virus capsids to cultured human and animal cell lines. J Virol 70, 6589-6597CrossRefGoogle ScholarPubMed
49Marionneau, S. et al. (2002) Norwalk virus binds to histo-blood group antigens present on gastroduodenal epithelial cells of secretor individuals. Gastroenterology 122, 1967-1977CrossRefGoogle ScholarPubMed
50Hutson, A.M. et al. (2003) Norwalk virus-like particle hemagglutination by binding to h histo-blood group antigens. J Virol 77, 405-415CrossRefGoogle ScholarPubMed
51Huang, P. et al. (2005) Norovirus and histo-blood group antigens: demonstration of a wide spectrum of strain specificities and classification of two major binding groups among multiple binding patterns. J Virol 79, 6714-6722CrossRefGoogle ScholarPubMed
52Huang, P. et al. (2003) Noroviruses bind to human ABO, Lewis, and Secretor histo-blood group antigens: identification of 4 distinct strain-specific patterns. J Infect Dis 188, 19-31CrossRefGoogle ScholarPubMed
53Harrington, P.R. et al. (2004) Norovirus Capture with histo-blood group antigens reveals novel virus-ligand interactions. J Virol 78, 3035-3045Google Scholar
54Harrington, P.R. et al. (2002) Binding of Norwalk virus-like particles to ABH histo-blood group antigens is blocked by antisera from infected human volunteers or experimentally vaccinated mice. J Virol 76, 12335-12343Google Scholar
55Tamura, M. et al. (2000) Interaction of recombinant norwalk virus particles with the 105-kilodalton cellular binding protein, a candidate receptor molecule for virus attachment. J Virol 74, 11589-11597CrossRefGoogle ScholarPubMed
56Tamura, M. et al. (2004) Genogroup II noroviruses efficiently bind to heparan sulfate proteoglycan associated with the cellular membrane. J Virol 78, 3817-3826CrossRefGoogle ScholarPubMed
57Ruvoen-Clouet, N. et al. (2000) Binding of rabbit hemorrhagic disease virus to antigens of the ABH histo-blood group family. J Virol 74, 11950-11954CrossRefGoogle ScholarPubMed
58Lindesmith, L. et al. (2003) Human susceptibility and resistance to Norwalk virus infection. Nat Med 9, 548-553CrossRefGoogle ScholarPubMed
59Hutson, A.M. et al. (2002) Norwalk virus infection and disease is associated with ABO histo-blood group type. J Infect Dis 185, 1335-1337Google Scholar
60Hutson, A.M. et al. (2005) Norwalk virus infection associates with secretor status genotyped from sera. J Med Virol 77, 116-120CrossRefGoogle ScholarPubMed
61Tan, M. and Jiang, X. (2005) Norovirus and its histo-blood group antigen receptors: an answer to a historical puzzle. Trends Microbiol 13, 285-293CrossRefGoogle ScholarPubMed
62Rockx, B.H. et al. (2005) Association of histo-blood group antigens and susceptibility to norovirus infections. J Infect Dis 191, 749-754CrossRefGoogle ScholarPubMed
63Fretz, R. et al. (2005) Risk factors for infections with Norovirus gastrointestinal illness in Switzerland. Eur J Clin Microbiol Infect Dis 24, 256-261CrossRefGoogle ScholarPubMed
64Meyer, E. et al. (2004) Nosocomial outbreak of norovirus gastroenteritis and investigation of ABO histo-blood group type in infected staff and patients. J Hosp Infect 56, 64-66CrossRefGoogle ScholarPubMed
65Hennessy, E.P. et al. (2003) Norwalk Virus Infection and Disease Is Associated with ABO Histo-Blood Group Type. J Infect Dis 188, 176-177CrossRefGoogle ScholarPubMed
66Dai, Y.C. et al. (2004) Seroprevalence of antibodies against noroviruses among students in a Chinese military medical university. J Clin Microbiol 42, 4615-4619CrossRefGoogle Scholar
67Morrow, A.L. et al. (2005) Human-milk glycans that inhibit pathogen binding protect breast-feeding infants against infectious diarrhea. J Nutr 135, 1304-1307CrossRefGoogle ScholarPubMed
68Marionneau, S. et al. (2005) Influence of the combined ABO, FUT2, and FUT3 polymorphism on susceptibility to Norwalk virus attachment. J Infect Dis 192, 1071-1077Google Scholar
69Jiang, X. et al. (2004) Human milk contains elements that block binding of noroviruses to human histo-blood group antigens in saliva. J Infect Dis 190, 1850-1859CrossRefGoogle ScholarPubMed
70Ruvoen-Clouet, N. et al. (2006) Bile-salt-stimulated lipase and mucins from milk of ‘secretor’ mothers inhibit the binding of Norwalk virus capsids to their carbohydrate ligands. Biochem J 393, 627-634CrossRefGoogle ScholarPubMed
71Chakravarty, S. et al. (2005) Evolutionary trace residues in noroviruses: importance in receptor binding, antigenicity, virion assembly, and strain diversity. J Virol 79, 554-568CrossRefGoogle ScholarPubMed
72Prasad, B.V. et al. (1999) X-ray crystallographic structure of the Norwalk virus capsid. Science 286, 287-290Google Scholar
73Prasad, B.V. et al. (1994) Three-dimensional structure of baculovirus-expressed Norwalk virus capsids. J Virol 68, 5117-5125Google Scholar
74Tan, M., Meller, J. and Jiang, X. (2006) C-terminal arginine cluster is essential for receptor binding of norovirus capsid protein. J Virol 80, 7322-7331Google Scholar
75Tan, M. and Jiang, X. (2005) The p domain of norovirus capsid protein forms a subviral particle that binds to histo-blood group antigen receptors. J Virol 79, 14017-14030CrossRefGoogle Scholar
76Tan, M. et al. (2003) Mutations within the P2 domain of norovirus capsid affect binding to human histo-blood group antigens: evidence for a binding pocket. J Virol 77, 12562-12571Google Scholar
77Tan, M., Hegde, R.S. and Jiang, X. (2004) The P domain of norovirus capsid protein forms dimer and binds to histo-blood group antigen receptors. J Virol 78, 6233-6242CrossRefGoogle Scholar
78Le Pendu, J. (2004) Histo-blood group antigen and human milk oligosaccharides: genetic polymorphism and risk of infectious diseases. Adv Exp Med Biol 554, 135-143Google Scholar
79Ravn, V. and Dabelsteen, E. (2000) Tissue distribution of histo-blood group antigens. Apmis 108, 1-28CrossRefGoogle ScholarPubMed
80Marionneau, S. et al. (2001) ABH and Lewis histo-blood group antigens, a model for the meaning of oligosaccharide diversity in the face of a changing world. Biochimie 83, 565-573CrossRefGoogle Scholar
81Tan, M. et al. (2004) E. coli-expressed recombinant norovirus capsid proteins maintain authentic antigenicity and receptor binding capability. J Med Virol 74, 641-649Google Scholar
82Lindesmith, L. et al. (2005) Cellular and humoral immunity following Snow Mountain virus challenge. J Virol 79, 2900-2909Google Scholar
83Chen, R. et al. (2006) X-ray structure of a native calicivirus: structural insights into antigenic diversity and host specificity. Proc Natl Acad Sci U S A 103, 8048-8053Google Scholar
84Chen, R. et al. (2004) Inter- and intragenus structural variations in caliciviruses and their functional implications. J Virol 78, 6469-6479Google Scholar
85Bertolotti-Ciarlet, A. et al. (2002) Structural requirements for the assembly of Norwalk virus-like particles. J Virol 76, 4044-4055Google Scholar
86Ausar, S.F. et al. (2006) Conformational stability and disassembly of Norwalk virus-like particles. Effect of pH and temperature. J Biol Chem 281, 19478-19488CrossRefGoogle ScholarPubMed
87Greenberg, H.B. et al. (1981) Proteins of Norwalk virus. J Virol 37, 994-999CrossRefGoogle ScholarPubMed
88Hardy, M.E. et al. (1995) Specific proteolytic cleavage of recombinant Norwalk virus capsid protein. J Virol 69, 1693-1698CrossRefGoogle ScholarPubMed
89Lochridge, V.P. et al. (2005) Epitopes in the P2 domain of norovirus VP1 recognized by monoclonal antibodies that block cell interactions. J Gen Virol 86, 2799-2806CrossRefGoogle ScholarPubMed
90Cao, S. et al. (2007) Structural basis for the recognition of blood group trisaccharides by norovirus. J Virol 81, 5949-5957CrossRefGoogle ScholarPubMed
91Newburg, D.S., Ruiz-Palacios, G.M. and Morrow, A.L. (2005) Human milk glycans protect infants against enteric pathogens. Annu Rev Nutr 25, 37-58Google Scholar
92Newburg, D.S. et al. (2004) Innate protection conferred by fucosylated oligosaccharides of human milk against diarrhea in breastfed infants. Glycobiology 14, 253-263CrossRefGoogle ScholarPubMed
93Newburg, D.S. et al. (1995) Human milk glycosaminoglycans inhibit HIV glycoprotein gp120 binding to its host cell CD4 receptor. J Nutr 125, 419-424Google ScholarPubMed
94Newburg, D.S. (2005) Innate immunity and human milk. J Nutr 135, 1308-1312Google Scholar
95Newburg, D.S. (1999) Human milk glycoconjugates that inhibit pathogens. Curr Med Chem 6, 117-127Google Scholar
96Jiang, X. et al. (2004) Human milk contains elements that block binding of noroviruses to histo-blood group antigens in saliva. Adv Exp Med Biol 554, 447-450CrossRefGoogle ScholarPubMed
97Morrow, A.L. et al. (2004) Human milk oligosaccharides are associated with protection against diarrhea in breast-fed infants. J Pediatr 145, 297-303Google Scholar
98Kunz, C. et al. (2000) Oligosaccharides in human milk: structural, functional, and metabolic aspects. Annu Rev Nutr 20, 699-722Google Scholar
99Greenberg, H.B. et al. (1979) Prevalence of antibody to the Norwalk virus in various countries. Infect Immun 26, 270-273CrossRefGoogle Scholar
100Kapikian, A.Z. (1996) Overview of viral gastroenteritis. Arch Virol Suppl 12, 7-19CrossRefGoogle ScholarPubMed
101Blacklow, N.R. and Cukor, G. (1982) Norwalk virus: a major cause of epidemic gastroenteritis. Am J Public Health 72, 1321-1303CrossRefGoogle Scholar
102Baron, R.C. et al. (1984) Serological responses among teenagers after natural exposure to Norwalk virus. J Infect Dis 150, 531-534Google Scholar
103Blacklow, N.R., Herrmann, J.E. and Cubitt, W.D. (1987) Immunobiology of Norwalk virus. Ciba Found Symp 128, 144-161Google Scholar
104Kappus, K.D. et al. (1982) An outbreak of Norwalk gastroenteritis associated with swimming in a pool and secondary person-to-person transmission. Am J Epidemiol 116, 834-839Google Scholar
105Farkas, T. et al. (2003) Homologous versus heterologous immune responses to norwalk-like viruses among crew members after acute gastroenteritis outbreaks on 2 US navy vessels. J Infect Dis 187, 187-193CrossRefGoogle ScholarPubMed
106Jiang, X. (2003) Development of serological and molecular tests for the diagnosis of calicivirus infections. In Viral Gastroenteritis (Desselberger, U. and Gray, J., eds), pp. 505-522, Elsevier Science B. V., AmsterdamGoogle Scholar
107Jiang, X. et al. (1996) Genetic and antigenic diversity of human caliciviruses (HuCVs) using RT-PCR and new EIAs. Arch Virol Suppl 12, 251-262Google ScholarPubMed
108Green, J. et al. (2000) Capsid protein diversity among Norwalk-like viruses. Virus Genes 20, 227-236Google Scholar
109Kitamoto, N. et al. (2002) Cross-reactivity among several recombinant calicivirus virus-like particles (VLPs) with monoclonal antibodies obtained from mice immunized orally with one type of VLP. J Clin Microbiol 40, 2459-2465CrossRefGoogle ScholarPubMed
110Hansman, G.S. et al. (2006) Genetic and antigenic diversity among noroviruses. J Gen Virol 87, 909-919CrossRefGoogle ScholarPubMed
111Bridger, J.C. (1980) Detection by electron microscopy of caliciviruses, astroviruses and rotavirus-like particles in the faeces of piglets with diarrhoea. Vet Rec 107, 532-533Google ScholarPubMed
112Dastjerdi, A.M. et al. (1999) The bovine Newbury agent-2 is genetically more closely related to human SRSVs than to animal caliciviruses. Virology 254, 1-5Google Scholar
113Dastjerdi, A.M., Snodgrass, D.R. and Bridger, J.C. (2000) Characterisation of the bovine enteric calici-like virus, Newbury agent 1. FEMS Microbiol Lett 192, 125-131CrossRefGoogle ScholarPubMed
114Oliver, S.L. et al. (2003) Molecular characterization of bovine enteric caliciviruses: a distinct third genogroup of noroviruses (norwalk-like viruses) unlikely to be of risk to humans. J Virol 77, 2789-2798CrossRefGoogle ScholarPubMed
115Deng, Y. et al. (2003) Studies of epidemiology and seroprevalence of bovine noroviruses in Germany. J Clin Microbiol 41, 2300-2305CrossRefGoogle ScholarPubMed
116Han, M.G. et al. (2004) Genetic recombination between two genotypes of genogroup III bovine noroviruses (BoNVs) and capsid sequence diversity among BoNVs and Nebraska-like bovine enteric caliciviruses. J Clin Microbiol 42, 5214-5224Google Scholar
117Liu, B.L. et al. (1999) Molecular characterization of a bovine enteric calicivirus: relationship to the Norwalk-like viruses. J Virol 73, 819-825CrossRefGoogle Scholar
118Wise, A.G. et al. (2004) Molecular characterization of noroviruses detected in diarrheic stools of Michigan and Wisconsin dairy calves: circulation of two distinct subgroups. Virus Res 100, 165-177Google Scholar
119Oliver, S.L. et al. (2004) A chimeric bovine enteric calicivirus: evidence for genomic recombination in genogroup III of the Norovirus genus of the Caliciviridae. Virology 326, 231-239Google Scholar
120Yamamoto, F. and Yamamoto, M. (2001) Molecular genetic basis of porcine histo-blood group AO system. Blood 97, 3308-3310Google Scholar
121Backer, A.E. et al. (1997) Biochemical and enzymatic characterization of blood group ABH and related histo-blood group glycosphingolipids in the epithelial cells of porcine small intestine. Glycobiology 7, 943-953Google Scholar
122Thorven, M. et al. (2005) A homozygous nonsense mutation (428G–>A) in the human secretor (FUT2) gene provides resistance to symptomatic norovirus (GGII) infections. J Virol 79, 15351-15355Google Scholar
123Tian, P. et al. (2006) Norovirus binds to blood group A-like antigens in oyster gastrointestinal cells. Lett Appl Microbiol 43, 645-651Google Scholar
124Le Guyader, F. et al. (2006) Norwalk virus-specific binding to oyster digestive tissues. Emerg Infect Dis 12, 931-936Google Scholar
125Feng, X. and Jiang, X. (2007) Library screen for inhibitors targeting norovirus binding to histo-blood group antigen receptors. Antimicrob Agents Chemother 51, 324-331Google Scholar
126LoBue, A.D. et al. (2006) Multivalent norovirus vaccines induce strong mucosal and systemic blocking antibodies against multiple strains. Vaccine 24, 5220-5234Google Scholar
127Zhang, Y.L. et al. (2006) Trapping Norovirus by glycosylated hydrogels: a potential oral antiviral drug. ChemMedChem 1, 1361-1366CrossRefGoogle ScholarPubMed
128Tacket, C.O. et al. (2003) Humoral, mucosal, and cellular immune responses to oral Norwalk virus-like particles in volunteers. Clin Immunol 108, 241-247Google Scholar
129Tacket, C.O. et al. (2000) Human immune responses to a novel norwalk virus vaccine delivered in transgenic potatoes. J Infect Dis 182, 302-305Google Scholar
130Mason, H.S. et al. (1996) Expression of Norwalk virus capsid protein in transgenic tobacco and potato and its oral immunogenicity in mice. Proc Natl Acad Sci U S A 93, 5335-5340CrossRefGoogle ScholarPubMed
131Ball, J.M. et al. (1996) Recombinant Norwalk virus-like particles as an oral vaccine. Arch Virol Suppl 12, 243-249Google Scholar
132Kumar, S. et al. (2007) Presence of a surface-exposed loop facilitates trypsinization of particles of sinsiro virus, a genogroup II.3 norovirus. J Virol 81, 1119-1128Google Scholar
133White, L.J., Hardy, M.E. and Estes, M.K. (1997) Biochemical characterization of a smaller form of recombinant Norwalk virus capsids assembled in insect cells. J Virol 71, 8066-8072CrossRefGoogle ScholarPubMed
134Hutson, A.M., Atmar, R.L. and Estes, M.K. (2004) Norovirus disease: changing epidemiology and host susceptibility factors. Trends Microbiol 12, 279-287CrossRefGoogle ScholarPubMed

Further reading, resources and contacts

General review articles on NVs:

135Hutson, A.M., Atmar, R.L. and Estes, M.K. (2004) Norovirus disease: changing epidemiology and host susceptibility factors. Trends Microbiol 12, 279-287Google Scholar
136Tan, M. and Jiang, X. (2005) Norovirus and its histo-blood group antigen receptors: an answer to a historical puzzle. Trends Microbiol 13, 285-293CrossRefGoogle ScholarPubMed
137Hardy, M.E. (2005) Norovirus protein structure and function. FEMS Microbiol Lett 253, 1-8Google Scholar
138Atmar, R.L. and Estes, M.K. (2006) The epidemiologic and clinical importance of norovirus infection. Gastroenterol Clinic N Am 35, 275-290Google Scholar
139Estes, M.K., Prasad, B.V. and Atmar, R.L. (2006) Noroviruses everywhere: has something changed? Curr Opin Infect Dis 19, 467-474Google Scholar
140Le Pendu, J. (2004) Histo-blood group antigen and human milk oligosaccharides: genetic polymorphism and risk of infectious diseases. Adv Exp Med Biol 554, 135-143Google Scholar
141Marionneau, S. et al. (2001) ABH and Lewis histo-blood group antigens, a model for the meaning of oligosaccharide diversity in the face of a changing world. Biochimie 83, 565-573CrossRefGoogle Scholar
142Green, K., Chanock, R. and Kapikian, A., (2001) Human calicivirus. In Fields Virology (4th edn) (Knipe, D.M. et al. , eds), 841-874, Lippincott Williams & WilkinsGoogle Scholar
135Hutson, A.M., Atmar, R.L. and Estes, M.K. (2004) Norovirus disease: changing epidemiology and host susceptibility factors. Trends Microbiol 12, 279-287Google Scholar
136Tan, M. and Jiang, X. (2005) Norovirus and its histo-blood group antigen receptors: an answer to a historical puzzle. Trends Microbiol 13, 285-293CrossRefGoogle ScholarPubMed
137Hardy, M.E. (2005) Norovirus protein structure and function. FEMS Microbiol Lett 253, 1-8Google Scholar
138Atmar, R.L. and Estes, M.K. (2006) The epidemiologic and clinical importance of norovirus infection. Gastroenterol Clinic N Am 35, 275-290Google Scholar
139Estes, M.K., Prasad, B.V. and Atmar, R.L. (2006) Noroviruses everywhere: has something changed? Curr Opin Infect Dis 19, 467-474Google Scholar
140Le Pendu, J. (2004) Histo-blood group antigen and human milk oligosaccharides: genetic polymorphism and risk of infectious diseases. Adv Exp Med Biol 554, 135-143Google Scholar
141Marionneau, S. et al. (2001) ABH and Lewis histo-blood group antigens, a model for the meaning of oligosaccharide diversity in the face of a changing world. Biochimie 83, 565-573CrossRefGoogle Scholar
142Green, K., Chanock, R. and Kapikian, A., (2001) Human calicivirus. In Fields Virology (4th edn) (Knipe, D.M. et al. , eds), 841-874, Lippincott Williams & WilkinsGoogle Scholar