Hostname: page-component-848d4c4894-tn8tq Total loading time: 0 Render date: 2024-06-30T20:18:03.930Z Has data issue: false hasContentIssue false

Advances in mouse models of prostate cancer

Published online by Cambridge University Press:  09 June 2008

Imran Ahmad*
Affiliation:
The Beatson Institute for Cancer Research, Glasgow, UK. Glasgow Citywide Urology, Greater Glasgow Health Board, Glasgow, UK.
Owen J. Sansom
Affiliation:
The Beatson Institute for Cancer Research, Glasgow, UK.
Hing Y. Leung
Affiliation:
The Beatson Institute for Cancer Research, Glasgow, UK. Glasgow Citywide Urology, Greater Glasgow Health Board, Glasgow, UK.
*
*Corresponding author: Imran Ahmad, The Beatson Institute for Cancer Research, Switchback Road, Bearsden, Glasgow, G61 1BD, UK. Tel: +44 141 330 3973; Fax: +44 141 942 6521; E-mail: imranahmad@doctors.net.uk

Abstract

Advances in science and technology have allowed us to manipulate the mouse genome and analyse the effect of specific genetic alterations on the development of prostate cancer in vivo. We can now analyse the molecular basis of initiation, invasion and progression to metastatic disease. The current mouse models utilise knockout, knock-in or conditional regulation of expression using Cre–loxP technology. Genes that have been targeted include homeobox genes, tumour suppressors and oncogenes, growth factors (and their receptors), steroid hormones and cell-cycle regulators, as well as pro- and anti-apoptotic proteins. Bigenic models indicate that that two ‘hits’ are required for progression from intra-epithelial neoplasia (PIN) to invasion carcinoma, and two to five hits are needed for metastasis. Here, we discuss the numerous models that mimic various aspects of the disease process, such as PIN, locally invasive adenocarcinoma and metastatic disease. Currently the PB-Cre4 × PTENloxP/loxP mouse is the only model that spans the entire continuum from initiation to local invasion and metastasis. Such mouse models increase our understanding of the disease process and provide targets for novel therapeutic approaches. Hopefully, the transgenic models will become inducible and ultimately allow both temporal and spatial gene inactivation. Compound mutational models will also develop further, with double and triple knock-in or knockout systems adding to our knowledge of the interaction between different signalling cascades.

Type
Review Article
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

1Abate-Shen, C. and Shen, M.M. (2000) Molecular genetics of prostate cancer. Genes Dev 14, 2410-2434CrossRefGoogle ScholarPubMed
2Guilbault, C. et al. (2007) Cystic fibrosis mouse models. Am J Respir Cell Mol Biol 36, 1-7CrossRefGoogle ScholarPubMed
3Dunning, W.F. (1963) Prostate cancer in the rat. Natl Cancer Inst Monogr 12, 351-369Google ScholarPubMed
4Isaacs, J.T. et al. (1980) Concepts in prostatic cancer biology: Dunning R-3327 H, HI, and AT tumors. Prog Clin Biol Res 37, 311-323Google ScholarPubMed
5Aquilina, J.W. et al. (1998) High grade prostatic intraepithelial neoplasia in military working dogs with and without prostate cancer. Prostate 36, 189-1933.0.CO;2-C>CrossRefGoogle ScholarPubMed
6Navone, N.M. et al. (1998) Model systems of prostate cancer: uses and limitations. Cancer Metastasis Rev 17, 361-371CrossRefGoogle ScholarPubMed
7Shappell, S.B. et al. (2004) Prostate pathology of genetically engineered mice: definitions and classification. The consensus report from the Bar Harbor meeting of the Mouse Models of Human Cancer Consortium Prostate Pathology Committee. Cancer Res 64, 2270-2305CrossRefGoogle ScholarPubMed
8Kim, M.J. et al. (2002) Nkx3.1 mutant mice recapitulate early stages of prostate carcinogenesis. Cancer Res 62, 2999-3004Google ScholarPubMed
9Garabedian, E.M., Humphrey, P.A. and Gordon, J.I. (1998) A transgenic mouse model of metastatic prostate cancer originating from neuroendocrine cells. Proc Natl Acad Sci U S A 95, 15382-15387CrossRefGoogle ScholarPubMed
10Masumori, N. et al. (2001) A probasin-large T antigen transgenic mouse line develops prostate adenocarcinoma and neuroendocrine carcinoma with metastatic potential. Cancer Res 61, 2239-2249Google ScholarPubMed
11Abate-Shen, C. and Shen, M.M. (2002) Mouse models of prostate carcinogenesis. Trends Genet 18, S1-S5CrossRefGoogle ScholarPubMed
12Powell, W.C. et al. (2003) Mouse strains for prostate tumorigenesis based on genes altered in human prostate cancer. Curr Drug Targets 4, 263-279CrossRefGoogle ScholarPubMed
13Greenberg, N.M. et al. (1995) Prostate cancer in a transgenic mouse. Proc Natl Acad Sci U S A 92, 3439-3443CrossRefGoogle Scholar
14Gingrich, J.R. et al. (1997) Androgen-independent prostate cancer progression in the TRAMP model. Cancer Res 57, 4687-4691Google ScholarPubMed
15Kasper, S. et al. (1998) Development, progression, and androgen-dependence of prostate tumors in probasin-large T antigen transgenic mice: a model for prostate cancer. Lab Invest 78, i-xvGoogle Scholar
16Klezovitch, O. et al. (2004) Hepsin promotes prostate cancer progression and metastasis. Cancer Cell 6, 185-195CrossRefGoogle ScholarPubMed
17Roy-Burman, P. et al. (2004) Genetically defined mouse models that mimic natural aspects of human prostate cancer development. Endocr Relat Cancer 11, 225-254CrossRefGoogle ScholarPubMed
18Stanbrough, M. et al. (2001) Prostatic intraepithelial neoplasia in mice expressing an androgen receptor transgene in prostate epithelium. Proc Natl Acad Sci U S A 98, 10823-10828CrossRefGoogle ScholarPubMed
19Scherl, A. et al. (2004) Prostatic intraepithelial neoplasia and intestinal metaplasia in prostates of probasin-RAS transgenic mice. Prostate 59, 448-459CrossRefGoogle ScholarPubMed
20Konno-Takahashi, N. et al. (2004) Engineered FGF-2 expression induces glandular epithelial hyperplasia in the murine prostatic dorsal lobe. Eur Urol 46, 126-132CrossRefGoogle ScholarPubMed
21Polnaszek, N. et al. (2003) Fibroblast growth factor 2 promotes tumor progression in an autochthonous mouse model of prostate cancer. Cancer Res 63, 5754-5760Google Scholar
22Foster, B.A. et al. (2002) Enforced expression of FGF-7 promotes epithelial hyperplasia whereas a dominant negative FGFR2iiib promotes the emergence of neuroendocrine phenotype in prostate glands of transgenic mice. Differentiation 70, 624-632CrossRefGoogle ScholarPubMed
23Song, Z. et al. (2000) The effect of fibroblast growth factor 8, isoform b, on the biology of prostate carcinoma cells and their interaction with stromal cells. Cancer Res 60, 6730-6736Google ScholarPubMed
24Song, Z. et al. (2002) Fibroblast growth factor 8 isoform B overexpression in prostate epithelium: a new mouse model for prostatic intraepithelial neoplasia. Cancer Res 62, 5096-5105Google ScholarPubMed
25Freeman, K.W. et al. (2003) Inducible prostate intraepithelial neoplasia with reversible hyperplasia in conditional FGFR1-expressing mice. Cancer Res 63, 8256-8263Google ScholarPubMed
26Jin, C. et al. (2003) Cooperation between ectopic FGFR1 and depression of FGFR2 in induction of prostatic intraepithelial neoplasia in the mouse prostate. Cancer Res 63, 8784-8790Google ScholarPubMed
27Kindblom, J. et al. (2003) Prostate hyperplasia in a transgenic mouse with prostate-specific expression of prolactin. Endocrinology 144, 2269-2278CrossRefGoogle Scholar
28Shim, E.H. et al. (2003) Expression of the F-box protein SKP2 induces hyperplasia, dysplasia, and low-grade carcinoma in the mouse prostate. Cancer Res 63, 1583-1588Google ScholarPubMed
29Majumder, P. K. et al. (2003) Prostate intraepithelial neoplasia induced by prostate restricted Akt activation: the MPAKT model. Proc Natl Acad Sci U S A 100, 7841-7846CrossRefGoogle ScholarPubMed
30Ellwood-Yen, K. et al. (2003) Myc-driven murine prostate cancer shares molecular features with human prostate tumors. Cancer Cell 4, 223-238CrossRefGoogle ScholarPubMed
31Duan, W. et al. (2005) Knockin of SV40 Tag oncogene in a mouse adenocarcinoma of the prostate model demonstrates advantageous features over the transgenic model. Oncogene 24, 1510-1524CrossRefGoogle Scholar
32Gabril, M.Y. et al. (2002) Prostate targeting: PSP94 gene promoter/enhancer region directed prostate tissue-specific expression in a transgenic mouse prostate cancer model. Gene Ther 9, 1589-1599CrossRefGoogle Scholar
33Kelavkar, U.P. et al. (2004) Overexpression of 12/15-lipoxygenase, an ortholog of human 15-lipoxygenase-1, in the prostate tumors of TRAMP mice. Neoplasia 6, 821-830CrossRefGoogle ScholarPubMed
34Kelavkar, U.P. et al. (2006) Conditional expression of human 15-lipoxygenase-1 in mouse prostate induces prostatic intraepithelial neoplasia: the FLiMP mouse model. Neoplasia 8, 510-522CrossRefGoogle ScholarPubMed
35Shappell, S.B. et al. (2003) Elevated expression of 12/15-lipoxygenase and cyclooxygenase-2 in a transgenic mouse model of prostate carcinoma. Cancer Res 63, 2256-2267Google Scholar
36Abdulkadir, S.A. et al. (2002) Conditional loss of Nkx3.1 in adult mice induces prostatic intraepithelial neoplasia. Mol Cell Biol 22, 1495-1503CrossRefGoogle ScholarPubMed
37Bhatia-Gaur, R. et al. (1999) Roles for Nkx3.1 in prostate development and cancer. Genes Dev 13, 966-977CrossRefGoogle ScholarPubMed
38Maddison, L.A. et al. (2004) Conditional deletion of Rb causes early stage prostate cancer. Cancer Res 64, 6018-6025CrossRefGoogle ScholarPubMed
39Krege, J.H. et al. (1998) Generation and reproductive phenotypes of mice lacking estrogen receptor beta. Proc Natl Acad Sci U S A 95, 15677-15682CrossRefGoogle ScholarPubMed
40Prins, G.S. et al. (2001) Estrogen imprinting of the developing prostate gland is mediated through stromal estrogen receptor alpha: studies with alphaERKO and betaERKO mice. Cancer Res 61, 6089-6097Google ScholarPubMed
41Weihua, Z. et al. (2001) A role for estrogen receptor beta in the regulation of growth of the ventral prostate. Proc Natl Acad Sci U S A 98, 6330-6335CrossRefGoogle ScholarPubMed
42Trotman, L.C. et al. (2003) Pten dose dictates cancer progression in the prostate. PLoS Biol 1, e59.CrossRefGoogle ScholarPubMed
43Wang, S. et al. (2003) Prostate-specific deletion of the murine Pten tumor suppressor gene leads to metastatic prostate cancer. Cancer Cell 4, 209-221CrossRefGoogle ScholarPubMed
44Bruxvoort, K.J. et al. (2007) Inactivation of Apc in the mouse prostate causes prostate carcinoma. Cancer Res 67, 2490-2496CrossRefGoogle ScholarPubMed
45Abdulkadir, S.A. (2005) Mechanisms of prostate tumorigenesis: roles for transcription factors Nkx3.1 and Egr1. Ann N Y Acad Sci 1059, 33-40CrossRefGoogle ScholarPubMed
46Di Cristofano, A. et al. (2001) Pten and p27KIP1 cooperate in prostate cancer tumor suppression in the mouse. Nat Genet 27, 222-224CrossRefGoogle ScholarPubMed
47You, M.J. et al. (2002) Genetic analysis of Pten and Ink4a/Arf interactions in the suppression of tumorigenesis in mice. Proc Natl Acad Sci U S A 99, 1455-1460CrossRefGoogle ScholarPubMed
48Kwabi-Addo, B. et al. (2001) Haploinsufficiency of the Pten tumor suppressor gene promotes prostate cancer progression. Proc Natl Acad Sci U S A 98, 11563-11568CrossRefGoogle ScholarPubMed
49Kim, M.J. et al. (2002) Cooperativity of Nkx3.1 and Pten loss of function in a mouse model of prostate carcinogenesis. Proc Natl Acad Sci U S A 99, 2884-2889CrossRefGoogle Scholar
50Chen, M.L. et al. (2006) The deficiency of Akt1 is sufficient to suppress tumor development in Pten+ /- mice. Genes Dev 20, 1569-1574CrossRefGoogle ScholarPubMed
51Zhong, C. et al. (2006) Cooperation between FGF8b overexpression and PTEN deficiency in prostate tumorigenesis. Cancer Res 66, 2188-2194CrossRefGoogle ScholarPubMed
52Zhou, Z. et al. (2006) Synergy of p53 and Rb deficiency in a conditional mouse model for metastatic prostate cancer. Cancer Res 66, 7889-7898CrossRefGoogle Scholar
53Rennie, P.S. et al. (1993) Characterization of two cis-acting DNA elements involved in the androgen regulation of the probasin gene. Mol Endocrinol 7, 23-36Google ScholarPubMed
54Kasper, S. et al. (1994) Cooperative binding of androgen receptors to two DNA sequences is required for androgen induction of the probasin gene. J Biol Chem 269, 31763-31769CrossRefGoogle ScholarPubMed
55Brookes, D.E. et al. (1998) Relative activity and specificity of promoters from prostate-expressed genes. Prostate 35, 18-263.0.CO;2-D>CrossRefGoogle ScholarPubMed
56Yan, Y. et al. (1997) Large fragment of the probasin promoter targets high levels of transgene expression to the prostate of transgenic mice. Prostate 32, 129-1393.0.CO;2-H>CrossRefGoogle Scholar
57Zhang, J. et al. (2000) A small composite probasin promoter confers high levels of prostate-specific gene expression through regulation by androgens and glucocorticoids in vitro and in vivo. Endocrinology 141, 4698-4710CrossRefGoogle ScholarPubMed
58Wu, X. et al. (2001) Generation of a prostate epithelial cell-specific Cre transgenic mouse model for tissue-specific gene ablation. Mech Dev 101, 61-69CrossRefGoogle ScholarPubMed
59Shibata, M.A. et al. (1996) Progression of prostatic intraepithelial neoplasia to invasive carcinoma in C3(1)/SV40 large T antigen transgenic mice: histopathological and molecular biological alterations. Cancer Res 56, 4894-4903Google ScholarPubMed
60Skalnik, D.G. et al. (1991) Restriction of neuroblastoma to the prostate gland in transgenic mice. Mol Cell Biol 11, 4518-4527Google Scholar
61Cussenot, O. et al. (1994) Immunocytochemical comparison of cultured normal epithelial prostatic cells with prostatic tissue sections. Exp Cell Res 214, 83-92CrossRefGoogle ScholarPubMed
62Leav, I. et al. (1996) Androgen receptor expression in prostatic dysplasia (prostatic intraepithelial neoplasia) in the human prostate: an immunohistochemical and in situ hybridization study. Prostate 29, 137-1453.0.CO;2-Z>CrossRefGoogle ScholarPubMed
63Feldman, B.J. and Feldman, D. (2001) The development of androgen-independent prostate cancer. Nat Rev Cancer 1, 34-45CrossRefGoogle ScholarPubMed
64Chen, C.D. et al. (2004) Molecular determinants of resistance to antiandrogen therapy. Nat Med 10, 33-39CrossRefGoogle ScholarPubMed
65McKeehan, W.L., Wang, F. and Kan, M. (1998) The heparan sulfate-fibroblast growth factor family: diversity of structure and function. Prog Nucleic Acid Res Mol Biol 59, 135-176CrossRefGoogle ScholarPubMed
66Basilico, C. and Moscatelli, D. (1992) The FGF family of growth factors and oncogenes. Adv Cancer Res 59, 115-165CrossRefGoogle ScholarPubMed
67Cunha, G.R. et al. (1992) Normal and abnormal development of the male urogenital tract. Role of androgens, mesenchymal-epithelial interactions, and growth factors. J Androl 13, 465-475CrossRefGoogle ScholarPubMed
68Heer, R. et al. (2004) Fibroblast growth factor 17 is over-expressed in human prostate cancer. J Pathol 204, 578-586CrossRefGoogle ScholarPubMed
69Ozen, M. et al. (2001) Role of fibroblast growth factor receptor signaling in prostate cancer cell survival. J Natl Cancer Inst 93, 1783-1790CrossRefGoogle ScholarPubMed
70Ropiquet, F. et al. (2000) Increased expression of fibroblast growth factor 6 in human prostatic intraepithelial neoplasia and prostate cancer. Cancer Res 60, 4245-4250Google ScholarPubMed
71Foster, B.A., Kaplan, P.J. and Greenberg, N.M. (1999) Characterization of the FGF axis and identification of a novel FGFR1iiic isoform during prostate cancer progression in the TRAMP model. Prostate Cancer Prostatic Dis 2, 76-82CrossRefGoogle ScholarPubMed
72Rubin, J.S. et al. (1995) Keratinocyte growth factor. Cell Biol Int 19, 399-411CrossRefGoogle ScholarPubMed
73Sugimura, Y. et al. (1996) Keratinocyte growth factor (KGF) can replace testosterone in the ductal branching morphogenesis of the rat ventral prostate. Int J Dev Biol 40, 941-951Google ScholarPubMed
74McGarvey, T.W. and Stearns, M.E. (1995) Keratinocyte growth factor and receptor mRNA expression in benign and malignant human prostate. Exp Mol Pathol 63, 52-62CrossRefGoogle ScholarPubMed
75Foster, B.A. et al. (1997) Characterization of prostatic epithelial cell lines derived from transgenic adenocarcinoma of the mouse prostate (TRAMP) model. Cancer Res 57, 3325-3330Google ScholarPubMed
76Huss, W.J. et al. (2003) Differential expression of specific FGF ligand and receptor isoforms during angiogenesis associated with prostate cancer progression. Prostate 54, 8-16CrossRefGoogle ScholarPubMed
77Dorkin, T.J. et al. (1999) FGF8 over-expression in prostate cancer is associated with decreased patient survival and persists in androgen independent disease. Oncogene 18, 2755-2761CrossRefGoogle ScholarPubMed
78Franke, T.F. et al. (1997) Direct regulation of the Akt proto-oncogene product by phosphatidylinositol-3,4-bisphosphate. Science 275, 665-668CrossRefGoogle ScholarPubMed
79Wu, X. et al. (1998) The PTEN/MMAC1 tumor suppressor phosphatase functions as a negative regulator of the phosphoinositide 3-kinase/Akt pathway. Proc Natl Acad Sci U S A 95, 15587-15591CrossRefGoogle ScholarPubMed
80Nesbit, C.E., Tersak, J.M. and Prochownik, E.V. (1999) MYC oncogenes and human neoplastic disease. Oncogene 18, 3004-3016CrossRefGoogle ScholarPubMed
81Gabril, M. et al. (2004) Characterization of initiation of angiogenesis in early stages of prostate adenocarcinoma development and progression in a transgenic murine model. Urology 64, 1233-1237CrossRefGoogle Scholar
82Huizen, I.V. et al. (2005) Establishment of a serum tumor marker for preclinical trials of mouse prostate cancer models. Clin Cancer Res 11, 7911-7919CrossRefGoogle ScholarPubMed
83Capecchi, M.R. (1994) Targeted gene replacement. Sci Am 270, 52-59CrossRefGoogle ScholarPubMed
84Copp, A.J. (1995) Death before birth: clues from gene knockouts and mutations. Trends Genet 11, 87-93CrossRefGoogle ScholarPubMed
85Nagy, A. (2000) Cre recombinase: the universal reagent for genome tailoring. Genesis 26, 99-1093.0.CO;2-B>CrossRefGoogle ScholarPubMed
86Sauer, B. and Henderson, N. (1988) Site-specific DNA recombination in mammalian cells by the Cre recombinase of bacteriophage P1. Proc Natl Acad Sci U S A 85, 5166-5170CrossRefGoogle ScholarPubMed
87Soriano, P. (1999) Generalized lacZ expression with the ROSA26 Cre reporter strain. Nat Genet 21, 70-71CrossRefGoogle ScholarPubMed
88Bowen, C. et al. (2000) Loss of NKX3.1 expression in human prostate cancers correlates with tumor progression. Cancer Res 60, 6111-6115Google ScholarPubMed
89Dong, J.T. (2001) Chromosomal deletions and tumor suppressor genes in prostate cancer. Cancer Metastasis Rev 20, 173-193CrossRefGoogle ScholarPubMed
90Bieberich, C.J. et al. (1996) Prostate-specific and androgen-dependent expression of a novel homeobox gene. J Biol Chem 271, 31779-31782CrossRefGoogle ScholarPubMed
91Bethel, C.R. and Bieberich, C.J. (2007) Loss of Nkx3.1 expression in the transgenic adenocarcinoma of mouse prostate model. Prostate 67, 1740-1750CrossRefGoogle ScholarPubMed
92Tanaka, M. et al. (2000) Nkx3.1, a murine homolog of Ddrosophila bagpipe, regulates epithelial ductal branching and proliferation of the prostate and palatine glands. Dev Dyn 219, 248-2603.3.CO;2-5>CrossRefGoogle ScholarPubMed
93Dahia, P.L. (2000) PTEN, a unique tumor suppressor gene. Endocr. Relat Cancer 7, 115-129CrossRefGoogle ScholarPubMed
94Suzuki, H. et al. (1998) Interfocal heterogeneity of PTEN/MMAC1 gene alterations in multiple metastatic prostate cancer tissues. Cancer Res 58, 204-209Google ScholarPubMed
95Di Cristofano, A. et al. (1998) Pten is essential for embryonic development and tumour suppression. Nat Genet 19, 348-355CrossRefGoogle ScholarPubMed
96Podsypanina, K. et al. (1999) Mutation of Pten/Mmac1 in mice causes neoplasia in multiple organ systems. Proc Natl Acad Sci U S A 96, 1563-1568CrossRefGoogle ScholarPubMed
97Stambolic, V. et al. (2000) High incidence of breast and endometrial neoplasia resembling human Cowden syndrome in pten+ /- mice. Cancer Res 60, 3605-3611Google ScholarPubMed
98Mundy, G.R. (2002) Metastasis to bone: causes, consequences and therapeutic opportunities. Nat Rev Cancer 2, 584-593CrossRefGoogle ScholarPubMed
99Brewster, S.F., Browne, S. and Brown, K.W. (1994) Somatic allelic loss at the DCC, APC, nm23-H1 and p53 tumor suppressor gene loci in human prostatic carcinoma. J Urol 151, 1073-1077CrossRefGoogle ScholarPubMed
100Phillips, S.M. et al. (1994) Loss of heterozygosity of the retinoblastoma and adenomatous polyposis susceptibility gene loci and in chromosomes 10p, 10q and 16q in human prostate cancer. Br J Urol 73, 390-395CrossRefGoogle ScholarPubMed
101Jeronimo, C. et al. (2004) A quantitative promoter methylation profile of prostate cancer. Clin. Cancer Res 10, 8472-8478CrossRefGoogle ScholarPubMed
102Yegnasubramanian, S. et al. (2004) Hypermethylation of CpG islands in primary and metastatic human prostate cancer. Cancer Res 64, 1975-1986CrossRefGoogle ScholarPubMed
103Sharpless, N.E. and DePinho, R.A. (1999) The INK4A/ARF locus and its two gene products. Curr Opin Genet Dev 9, 22-30CrossRefGoogle ScholarPubMed
104Burri, N. et al. (2001) Methylation silencing and mutations of the p14ARF and p16INK4a genes in colon cancer. Lab Invest 81, 217-229CrossRefGoogle ScholarPubMed
105Chen, Z. et al. (2005) Crucial role of p53-dependent cellular senescence in suppression of Pten-deficient tumorigenesis. Nature 436, 725-730CrossRefGoogle ScholarPubMed
106Abate-Shen, C. et al. (2003) Nkx3.1; Pten mutant mice develop invasive prostate adenocarcinoma and lymph node metastases. Cancer Res 63, 3886-3890Google ScholarPubMed
107Gao, H. et al. (2006) Combinatorial activities of Akt and B-Raf/Erk signaling in a mouse model of androgen-independent prostate cancer. Proc Natl Acad Sci U S A 103, 14477-14482CrossRefGoogle Scholar
108Gao, H. et al. (2006) Emergence of androgen independence at early stages of prostate cancer progression in Nkx3.1; Pten mice. Cancer Res 66, 7929-7933CrossRefGoogle ScholarPubMed
109Majumder, P.K. et al. (2004) mTOR inhibition reverses Akt-dependent prostate intraepithelial neoplasia through regulation of apoptotic and HIF-1-dependent pathways. Nat Med 10, 594-601CrossRefGoogle ScholarPubMed
110Wechter, W.J. et al. (2000) E-7869 (R-flurbiprofen) inhibits progression of prostate cancer in the TRAMP mouse. Cancer Res 60, 2203-2208Google ScholarPubMed
111Gupta, S. et al. (2004) Suppression of prostate carcinogenesis by dietary supplementation of celecoxib in transgenic adenocarcinoma of the mouse prostate model. Cancer Res 64, 3334-3343CrossRefGoogle ScholarPubMed
112Narayanan, B.A. et al. (2004) Regression of mouse prostatic intraepithelial neoplasia by nonsteroidal anti-inflammatory drugs in the transgenic adenocarcinoma mouse prostate model. Clin Cancer Res 10, 7727-7737CrossRefGoogle ScholarPubMed
113Abdulkadir, S.A. and Kim, J. (2005) Genetically engineered murine models of prostate cancer: insights into mechanisms of tumorigenesis and potential utility. Future Oncol 1, 351-360CrossRefGoogle ScholarPubMed
114Sargeant, A.M. et al. (2007) Chemopreventive and bioenergetic signaling effects of PDK1/Akt pathway inhibition in a transgenic mouse model of prostate cancer. Toxicol Pathol 35, 549-561CrossRefGoogle Scholar
115Wang, J., Eltoum, I.E. and Lamartiniere, C.A. (2007) Genistein chemoprevention of prostate cancer in TRAMP mice. J Carcinog 6, 3CrossRefGoogle ScholarPubMed
116Chanvitayapongs, S., Draczynska-Lusiak, B. and Sun, A.Y. (1997) Amelioration of oxidative stress by antioxidants and resveratrol in PC12 cells. Neuroreport 8, 1499-1502CrossRefGoogle ScholarPubMed
117Harper, C.E. et al. (2007) Resveratrol suppresses prostate cancer progression in transgenic mice. Carcinogenesis 28, 1946-1953CrossRefGoogle ScholarPubMed
118Gupta, S. et al. (2001) Inhibition of prostate carcinogenesis in TRAMP mice by oral infusion of green tea polyphenols. Proc Natl Acad Sci U S A 98, 10350-10355CrossRefGoogle ScholarPubMed
119Gupta, S. et al. (2000) Chemoprevention of prostate carcinogenesis by alpha-difluoromethylornithine in TRAMP mice. Cancer Res 60, 5125-5133Google ScholarPubMed
120Huss, W.J. et al. (2004) Retinoic acid slows progression and promotes apoptosis of spontaneous prostate cancer. Prostate 61, 142-152CrossRefGoogle ScholarPubMed
121Raina, K. et al. (2007) Oral grape seed extract inhibits prostate tumor growth and progression in TRAMP mice. Cancer Res 67, 5976-5982CrossRefGoogle ScholarPubMed
122Venkateswaran, V. et al. (2004) Antioxidants block prostate cancer in lady transgenic mice. Cancer Res 64, 5891-5896CrossRefGoogle ScholarPubMed
123Raghow, S. et al. (2000) Efficacious chemoprevention of primary prostate cancer by flutamide in an autochthonous transgenic model. Cancer Res 60, 4093-4097Google Scholar
124Raghow, S. et al. (2002) Toremifene prevents prostate cancer in the transgenic adenocarcinoma of mouse prostate model. Cancer Res 62, 1370-1376Google ScholarPubMed
125Mori, H. et al. (1995) Principle of the bark of Phellodendron amurense to suppress the cellular immune response: effect of phellodendrine on cellular and humoral immune responses. Planta Med 61, 45-49CrossRefGoogle ScholarPubMed
126Kumar, A.P. et al. (2007) Akt/cAMP-responsive element binding protein/cyclin D1 network: a novel target for prostate cancer inhibition in transgenic adenocarcinoma of mouse prostate model mediated by Nexrutine, a Phellodendron amurense bark extract. Clin Cancer Res 13, 2784-2794CrossRefGoogle ScholarPubMed
127Hurwitz, A.A. et al. (2000) Combination immunotherapy of primary prostate cancer in a transgenic mouse model using CTLA-4 blockade. Cancer Res 60, 2444-2448Google Scholar
128Linsley, P.S. et al. (1991) CTLA-4 is a second receptor for the B cell activation antigen B7. J Exp Med 174, 561-569CrossRefGoogle ScholarPubMed
129Martiniello-Wilks, R. et al. (2003) Application of the transgenic adenocarcinoma mouse prostate (TRAMP) model for pre-clinical therapeutic studies. Anticancer Res 23, 2633-2642Google ScholarPubMed
130Isayeva, T. et al. (2007) Effects of sustained antiangiogenic therapy in multistage prostate cancer in TRAMP model. Cancer Res 67, 5789-5797CrossRefGoogle ScholarPubMed
131Kaeberlein, M., McVey, M. and Guarente, L. (1999) The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes Dev 13, 2570-2580CrossRefGoogle ScholarPubMed
132Brunet, A. et al. (2004) Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science 303, 2011-2015CrossRefGoogle ScholarPubMed
133Cohen, H.Y. et al. (2004) Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase. Science 305, 390-392CrossRefGoogle ScholarPubMed
134Huffman, D.M. et al. (2007) SIRT1 is significantly elevated in mouse and human prostate cancer. Cancer Res 67, 6612-6618CrossRefGoogle ScholarPubMed
135Bastian, P.J. et al. (2004) Molecular biomarker in prostate cancer: the role of CpG island hypermethylation. Eur Urol 46, 698-708CrossRefGoogle ScholarPubMed
136Patra, S.K. et al. (2002) DNA methyltransferase and demethylase in human prostate cancer. Mol. Carcinog. 33, 163-171CrossRefGoogle ScholarPubMed
137McCabe, M.T. et al. (2006) Inhibition of DNA methyltransferase activity prevents tumorigenesis in a mouse model of prostate cancer. Cancer Res 66, 385-392CrossRefGoogle Scholar
138Weissleder, R. (2002) Scaling down imaging: molecular mapping of cancer in mice. Nat Rev Cancer 2, 11-18CrossRefGoogle ScholarPubMed
139Massoud, T.F. and Gambhir, S.S. (2003) Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Genes Dev 17, 545-580CrossRefGoogle Scholar
140Choy, G. et al. (2003) Comparison of noninvasive fluorescent and bioluminescent small animal optical imaging. Biotechniques 35, 1022-1030CrossRefGoogle ScholarPubMed
141Hsieh, C.L. et al. (2005) A luciferase transgenic mouse model: visualization of prostate development and its androgen responsiveness in live animals. J Mol Endocrinol 35, 293-304CrossRefGoogle ScholarPubMed
142Lyons, S.K. et al. (2006) Noninvasive bioluminescence imaging of normal and spontaneously transformed prostate tissue in mice. Cancer Res 66, 4701-4707CrossRefGoogle ScholarPubMed
143Ellwood-Yen, K., Wongvipat, J. and Sawyers, C. (2006) Transgenic mouse model for rapid pharmacodynamic evaluation of antiandrogens. Cancer Res 66, 10513-10516CrossRefGoogle ScholarPubMed
144Liao, C.P. et al. (2007) Mouse models of prostate adenocarcinoma with the capacity to monitor spontaneous carcinogenesis by bioluminescence or fluorescence. Cancer Res 67, 7525-7533CrossRefGoogle ScholarPubMed
145Nastiuk, K.L. et al. (2007) In vivo MRI volumetric measurement of prostate regression and growth in mice. BMC Urol 7, 12CrossRefGoogle ScholarPubMed
146Feil, R. et al. (1996) Ligand-activated site-specific recombination in mice. Proc Natl Acad Sci U S A 93, 10887-10890CrossRefGoogle ScholarPubMed
147Indra, A.K. et al. (1999) Temporally-controlled site-specific mutagenesis in the basal layer of the epidermis: comparison of the recombinase activity of the tamoxifen-inducible Cre-ER(T) and Cre-ER(T2) recombinases. Nucleic Acids Res 27, 4324-4327CrossRefGoogle ScholarPubMed
148Jonkers, J. and Berns, A. (2002) Conditional mouse models of sporadic cancer. Nat Rev Cancer 2, 251-265CrossRefGoogle ScholarPubMed
149Bex, A. et al. (2002) Controlling gene expression in the urothelium using transgenic mice with inducible bladder specific Cre-lox recombination. J Urol 168, 2641-2644CrossRefGoogle ScholarPubMed
150Leow, C.C., Wang, X.D. and Gao, W.Q. (2005) Novel method of generating prostate-specific Cre-LoxP gene switching via intraductal delivery of adenovirus. Prostate 65, 1-9CrossRefGoogle ScholarPubMed
151Czauderna, F. et al. (2003) Inducible shRNA expression for application in a prostate cancer mouse model. Nucleic Acids Res 31, e127CrossRefGoogle Scholar
152Oyama, N. et al. (2004) Monitoring of therapy in androgen-dependent prostate tumor model by measuring tumor proliferation. J Nucl Med 45, 519-525Google ScholarPubMed
153Yang, Y.S. et al. (2006) Comparative in vitro and in vivo evaluation of two 64Cu-labeled bombesin analogs in a mouse model of human prostate adenocarcinoma. Nucl Med Biol 33, 371-380CrossRefGoogle Scholar
154Garrison, J.C. et al. (2007) In vivo evaluation and small-animal PET/CT of a prostate cancer mouse model using 64Cu bombesin analogs: side-by-side comparison of the CB-TE2A and DOTA chelation systems. J Nucl Med 48, 1327-1337CrossRefGoogle ScholarPubMed
155Bhowmick, N.A. et al. (2004) TGF-beta signaling in fibroblasts modulates the oncogenic potential of adjacent epithelia. Science 303, 848-851CrossRefGoogle ScholarPubMed
156Zhao, M. et al. (2007) Monotherapy with a tumor-targeting mutant of Salmonella typhimurium cures orthotopic metastatic mouse models of human prostate cancer. Proc Natl Acad Sci U S A 104, 10170-10174CrossRefGoogle ScholarPubMed
157Zhang, L. et al. (2007) Intratumoral delivery and suppression of prostate tumor growth by attenuated Salmonella enterica serovar typhimurium carrying plasmid-based small interfering RNAs. Cancer Res 67, 5859-5864CrossRefGoogle ScholarPubMed

Further reading, resources and contacts

Mouse models of Human Cancer Consortium (MMHCC) Prostate Cancer Site. This website offers a brief introduction to prostate cancer, including cancer incidence, diagnosis, treatment and murine modelling of the disease: