Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-28T06:54:47.863Z Has data issue: false hasContentIssue false

Straw return-enhanced soil carbon and nitrogen fractions and nitrogen use efficiency in a maize–rice rotation system

Published online by Cambridge University Press:  31 January 2024

Yanwen Wang
Affiliation:
MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River/College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, People’s Republic of China
Mingguang Qin
Affiliation:
MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River/College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, People’s Republic of China
Ming Zhan*
Affiliation:
MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River/College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, People’s Republic of China
Tianqi Liu
Affiliation:
School of Resources and Environment, Northeast Agricultural University, Harbin, People’s Republic of China
Jinzhan Yuan
Affiliation:
MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River/College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, People’s Republic of China
*
Corresponding author: Ming Zhan; Email: zhanming@mail.hzau.edu.cn

Summary

Considering straw resource utilization and air pollution prevention, straw return has been commonly practiced in China. However, the practicability of plenty straw return in an emerging maize–rice rotation and their effects on soil C and N pools have not been extensively investigated. This study has been conducted to examine the effects of straw return on soil nutrients, soil functional C and N fractions, and then to figure out their relationships with yield and N use efficiency. Two treatments of straw return (S2Nck) and without straw return (S0Nck) were compared in 3-year field experiment, and subplots without N application were added in their respective plots in the third year. The results showed that, relative to the control (S0Nck), straw return significantly increased soil mineralized nitrogen (Nmin), available P, and exchange K content by 11.7%, 41.1%, and 17.4% averaged across 3-year experiments, respectively. Straw return substantially increased soil dissolved organic C, microbial biomass C, and microbial biomass N content by 73.0%, 25.2%, and 36.8%, respectively. Furthermore, straw return markedly increased C and N retention in particulate organic matter in microaggregates (iPOM) and mineral associated organic matter within microaggregates (intra-SC), but significantly reduced in free mineral associated organic matter (free-SC) fraction. The structural equation modeling analysis showed that yield and the partial factor productivity of N were positively correlated with labile and slow soil C and N fractions. Consequently, straw incorporation significantly increased grain yields of maize by 14.7% and rice by 15.1%. The annual potential reduction proportion in fertilizer-N induced by straw return was estimated to be 25.7% in the third year. This study suggests that the incorporation of straws is an effective way to enhance soil nutrients and regulate soil C and N pools to improve crop production and has the potential to reduce N fertilizer application under maize–rice rotation in subtropical regions.

Type
Research Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Brown, K.H., Bach, E.M., Drijber, R.A., Hofmockel, K.S., Jeske, E.S., Sawyer, J.E. and Castellano, M.J. (2014). A long-term nitrogen fertilizer gradient has little effect on soil organic matter in a high-intensity maize production system. Global Change Biology 20, 13391350.CrossRefGoogle Scholar
Chen, H., Li, X., Hu, F. and Shi, W. (2013). Soil nitrous oxide emissions following crop residue addition: a meta-analysis. Global Change Biology 19, 29562964.CrossRefGoogle ScholarPubMed
Chen, Y., Fan, P., Li, L., Tian, H., Ashraf, U., Mo, Z., Duan, M., Wu, Q., Zhang, Z., Tang, X. and Pan, S. (2020). Straw incorporation coupled with deep placement of nitrogen fertilizer improved grain yield and nitrogen use efficiency in direct-seeded rice. Journal of Soil Science and Plant Nutrition 20, 23382347.CrossRefGoogle Scholar
Cui, H., Luo, Y., Chen, J., Jin, M., Li, Y. and Wang, Z. (2022a). Straw return strategies to improve soil properties and crop productivity in a winter wheat-summer maize cropping system. European Journal of Agronomy 133, 126436.CrossRefGoogle Scholar
Cui, S., Zhu, X. and Cao, G. (2022b). Effects of years of rice straw return on soil nitrogen components from rice–wheat cropped fields. Agronomy 12, 1247.CrossRefGoogle Scholar
Dai, W., Wang, J., Fang, K., Cao, L., Sha, Z. and Cao, L. (2021). Wheat straw incorporation affecting soil carbon and nitrogen fractions in Chinese paddy soil. Agriculture 11, 803.CrossRefGoogle Scholar
Desrochers, J., Brye, K.R., Gbur, E., Pollock, E.D. and Savin, M.C. (2020). Carbon and nitrogen properties of particulate organic matter fractions in an Alfisol in the mid-Southern, USA. Geoderma Regional 20, e00248.CrossRefGoogle Scholar
Dou, X.L., Xu, X., Shu, X., Zhang, Q.F. and Cheng, X.L. (2016). Shifts in soil organic carbon and nitrogen dynamics for afforestation in central China. Ecological Engineering 87, 263270.CrossRefGoogle Scholar
Fan, Y., Gao, J., Sun, J., Liu, J., Su, Z., Wang, Z., Yu, X., and Hu, S. (2021). Effects of straw returning and potassium fertilizer application on root characteristics and yield of spring maize in China inner Mongolia. Agronomy Journal 113, 43694385.CrossRefGoogle Scholar
Guo, Z., Zhang, Z., Zhou, H., Wang, D., and Peng, X. (2019). The effect of 34-year continuous fertilization on the SOC physical fractions and its chemical composition in a Vertisol. Scientific Reports 9, 2505.CrossRefGoogle Scholar
Han, X., Xu, C., Dungait, J.A.J., Bol, R., Wang, X., Wu, W. and Meng, F. (2018). Straw incorporation increases crop yield and soil organic carbon sequestration but varies under different natural conditions and farming practices in China: a system analysis. Biogeosciences 15, 19331946.CrossRefGoogle Scholar
Hao, X.X., Han, X.Z., Wang, S.Y. and Li, L.J. (2022). Dynamics and composition of soil organic carbon in response to 15 years of straw return in a Mollisol. Soil and Tillage Research 215, 105221.CrossRefGoogle Scholar
Huang, S., Zeng, Y., Wu, J., Shi, Q. and Pan, X. (2013). Effect of crop residue retention on rice yield in China: a meta-analysis. Field Crops Research 154, 188194.CrossRefGoogle Scholar
Huang, T., Yang, H., Huang, C. and Ju, X. (2018). Effects of nitrogen management and straw return on soil organic carbon sequestration and aggregate-associated carbon. European Journal of Soil Science 69, 913923.CrossRefGoogle Scholar
Huang, T., Yang, N., Lu, C., Qin, X. and Siddique, K.H.M. (2021). Soil organic carbon, total nitrogen, available nutrients, and yield under different straw returning methods. Soil and Tillage Research 214, 105171.CrossRefGoogle Scholar
Huang, X., Cheng, L., Chien, H., Jiang, H., Yang, X. and Yin, C. (2019). Sustainability of returning wheat straw to field in Hebei, Shandong and Jiangsu provinces: a contingent valuation method. Journal of Cleaner Production 213, 12901298.CrossRefGoogle Scholar
Lal, R. (2018). Digging deeper: a holistic perspective of factors affecting soil organic carbon sequestration in agroecosystems. Global Change Biology 24, 32853301.CrossRefGoogle ScholarPubMed
Li, B., Liang, F., Wang, Y., Cao, W., Song, H., Chen, J. and Guo, J. (2023). Magnitude and efficiency of straw return in building up soil organic carbon: a global synthesis integrating the impacts of agricultural managements and environmental conditions. Science of the Total Environment 875, 162670.CrossRefGoogle Scholar
Li, H., Zhang, Y., Yang, S., Wang, Z., Feng, X., Liu, H. and Jiang, Y. (2019). Variations in soil bacterial taxonomic profiles and putative functions in response to straw incorporation combined with N fertilization during the maize growing season. Agriculture, Ecosystems and Environment 283, 106578.CrossRefGoogle Scholar
Li, S., Gu, X., Zhuang, J., An, T., Pei, J., Xie, H., Li, H., Fu, S. and Wang, J. (2016). Distribution and storage of crop residue carbon in aggregates and its contribution to organic carbon of soil with low fertility. Soil and Tillage Research 155, 199206.CrossRefGoogle Scholar
Liang, F., Li, B., Vogt, R. D., Mulder, J., Song, H., Chen, J. and Guo, J. (2023). Straw return exacerbates soil acidification in major Chinese croplands. Resources, Conservation and Recycling 198, 107176.CrossRefGoogle Scholar
Liu, C., Lu, M., Cui, J., Li, B. and Fang, C. M. (2014). Effects of straw carbon input on carbon dynamics in agricultural soils: a meta-analysis. Global Change Biology 20, 13661381.CrossRefGoogle ScholarPubMed
Liu, X., Xu, G., Wang, Q. and Hang, Y. (2017). Effects of insect-proof net cultivation, rice-duck farming, and organic matter return on rice dry matter accumulation and nitrogen utilization. Frontiers in Plant Science 8, 47.Google ScholarPubMed
Luo, Y., Field, C.B. and Jackson, R.B. (2006). Does nitrogen constrain carbon cycling, or does carbon input stimulate nitrogen cycling? Ecology 87, 34.CrossRefGoogle Scholar
Martínez, J.M., Galantini, J.A., Duval, M.E. and López, F.M. (2017). Tillage effects on labile pools of soil organic nitrogen in a semi-humid climate of Argentina: a long-term field study. Soil and Tillage Research 169, 7180.CrossRefGoogle Scholar
Mehmood, I., Qiao, L., Chen, H., Tang, Q., Woolf, D. and Fan, M. (2020). Biochar addition leads to more soil organic carbon sequestration under a maize-rice cropping system than continuous flooded rice. Agriculture Ecosystems and Environment 298, 106965.CrossRefGoogle Scholar
Mi, W., Sun, Y., Zhao, C. and Wu, L. (2019). Soil organic carbon and its labile fractions in paddy soil as influenced by water regimes and straw management. Agricultural Water Management 224, 105752.CrossRefGoogle Scholar
Powlson, D.S., Bhogal, A., Chambers, B.J., Coleman, K., Macdonald, A.J., Goulding, K.W.T. and Whitmore, A.P. (2012). The potential to increase soil carbon stocks through reduced tillage or organic material additions in England and Wales: a case study. Agriculture, Ecosystems and Environment 146, 2333.CrossRefGoogle Scholar
Qiu, H., Ge, T., Liu, J., Chen, X., Hu, Y., Wu, J., Su, Y. and Kuzyakov, Y. (2018). Effects of biotic and abiotic factors on soil organic matter mineralization: experiments and structural modeling analysis. European Journal of Soil Biology 84, 2734.CrossRefGoogle Scholar
Qiu, S., Nie, J., Long, S., Lu, Y., Zhao, S., Xu, X., He, P., Liao, Y. and Zhou, W. (2022). Aggregate mass and carbon stocks in a paddy soil after long-term application of chemical or organic fertilizers. Soil Use and Management 38, 15641577.CrossRefGoogle Scholar
Recous, S., Robin, D., Darwis, D. and Mary, B. (1995). Soil inorganic N availability: effect on maize residue decomposition. Soil Biology and Biochemistry 27, 15291538.CrossRefGoogle Scholar
Shao, J., Gao, C., Afi Seglah, P., Xie, J., Zhao, L., Bi, Y. and Wang, Y. (2023). Analysis of the available straw nutrient resources and substitution of chemical fertilizers with straw returned directly to the field in China. Agriculture 13, 1187.CrossRefGoogle Scholar
Six, J., Elliott, E.T., Paustian, K. and Doran, J.W. (1998). Aggregation and soil organic matter accumulation in cultivated and native grassland soils. Soil Science Society of America Journal 62, 13671377.CrossRefGoogle Scholar
Six, J. and Paustian, K. (2014). Aggregate-associated soil organic matter as an ecosystem property and a measurement tool. Soil Biology and Biochemistry 68, A4A9.CrossRefGoogle Scholar
Six, J., Paustian, K., Elliott, E.T. and Combrink, C. (2000). Soil structure and organic matter I. Distribution of aggregate-size classes and aggregate-associated carbon. Soil Science Society of America Journal 64, 681689.CrossRefGoogle Scholar
Sun, M., Zhan, M., Zhao, M., Tang, L.L., Qin, M.G., Cao, C.G., Cai, M.L., Jiang, Y. and Liu, Z.H. (2019). Maize and rice double cropping benefits carbon footprint and soil carbon budget in paddy field. Field Crops Research 243, 107620.CrossRefGoogle Scholar
Tian, P., Sui, P.X., Lian, H.L., Wang, Z.Y., Meng, G.X., Sun, Y., Wang, Y.Y., Su, Y.H., Ma, Z.Q., Qi, H. and Jiang, Y. (2019). Maize straw returning approaches affected straw decomposition and soil carbon and nitrogen storage in Northeast China. Agronomy-Basel 9, 818.CrossRefGoogle Scholar
Turmel, M., Speratti, A., Baudron, F., Verhulst, N. and Govaerts, B. (2015). Crop residue management and soil health: a systems analysis. Agricultural Systems 134, 616.CrossRefGoogle Scholar
Wang, K.K., Hu, W.S., Xu, Z.Y., Xue, Y.H., Zhang, Z., Liao, S.P., Zhang, Y.Y., Li, X.K., Ren, T., Cong, R.H. and Lu, J.W. (2022). Seasonal temporal characteristics of in situ straw decomposition in different types and returning methods. Journal of Soil Science and Plant Nutrition 22, 42284240.CrossRefGoogle Scholar
Wiesmeier, M., Hubner, R., Sporlein, P., Geuss, U., Hangen, E., Reischl, A., Schilling, B., von Lutzow, M. and Kogel-Knabner, I. (2014). Carbon sequestration potential of soils in southeast Germany derived from stable soil organic carbon saturation. Global Change Biology 20, 653665.CrossRefGoogle ScholarPubMed
Xia, L.L., Lam, S.K., Wolf, B., Kiese, R., Chen, D.L. and Butterbach-Bahl, K. (2018). Trade-offs between soil carbon sequestration and reactive nitrogen losses under straw return in global agroecosystems. Global Change Biology 24, 59195932.CrossRefGoogle ScholarPubMed
Xu, M., Lou, Y., Sun, X., Wang, W., Baniyamuddin, M. and Zhao, K. (2011). Soil organic carbon active fractions as early indicators for total carbon change under straw incorporation. Biology and Fertility of Soils 47, 745752.CrossRefGoogle Scholar
Xu, X., Pang, D., Chen, J., Luo, Y., Zheng, M., Yin, Y., Li, Y., Li, Y. and Wang, Z. (2018). Straw return accompany with low nitrogen moderately promoted deep root. Field Crops Research 221, 7180.CrossRefGoogle Scholar
Yan, Y., Tian, J., Fan, M., Zhang, F., Li, X., Christie, P., Chen, H., Lee, J., Kuzyakov, Y. and Six, J. (2012). Soil organic carbon and total nitrogen in intensively managed arable soils. Agriculture, Ecosystems and Environment 150, 102110.CrossRefGoogle Scholar
Yu, H.Y., Ding, W.X., Luo, J.F., Geng, R.L. and Cai, Z.C. (2012). Long-term application of organic manure and mineral fertilizers on aggregation and aggregate-associated carbon in a sandy loam soil. Soil and Tillage Research 124, 170177.CrossRefGoogle Scholar
Yu, Q.G., Hu, X., Ma, J.W., Ye, J., Sun, W.C., Wang, Q. and Lin, H. (2020). Effects of long-term organic material applications on soil carbon and nitrogen fractions in paddy fields. Soil and Tillage Research 196, 104483.CrossRefGoogle Scholar
Yuan, G., Huan, W., Song, H., Lu, D., Chen, X., Wang, H. and Zhou, J. (2021). Effects of straw incorporation and potassium fertilizer on crop yields, soil organic carbon, and active carbon in the rice–wheat system. Soil and Tillage Research 209, 104958.CrossRefGoogle Scholar
Zhang, J., Li, W., Zhou, Y., Ding, Y., Xu, L., Jiang, Y. and Li, G. (2021). Long-term straw incorporation increases rice yield stability under high fertilization level conditions in the rice–wheat system. The Crop Journal 9, 11911197.CrossRefGoogle Scholar
Zhang, P., Wei, T., Jia, Z., Han, Q. and Ren, X. (2014). Soil aggregate and crop yield changes with different rates of straw incorporation in semiarid areas of northwest China. Geoderma 230–231, 4149.CrossRefGoogle Scholar
Zhao, B., Zhang, J., Yu, Y., Karlen, D.L. and Hao, X. (2016). Crop residue management and fertilization effects on soil organic matter and associated biological properties. Environmental Science and Pollution Research 23, 1758117591.CrossRefGoogle ScholarPubMed
Zhao, H., Ning, P., Chen, Y., Liu, J., Ghaffar, S.A., Xiao, T. and Shi, J. (2019). Effect of straw amendment modes on soil organic carbon, nitrogen sequestration and crop yield on the North-Central Plain of China. Soil Use and Management 35, 511525.CrossRefGoogle Scholar
Zhao, H., Shar, A.G., Li, S., Chen, Y., Shi, J., Zhang, X. and Tian, X. (2018). Effect of straw return mode on soil aggregation and aggregate carbon content in an annual maize-wheat double cropping system. Soil and Tillage Research 175, 178186.CrossRefGoogle Scholar
Supplementary material: PDF

Wang et al. supplementary material

Wang et al. supplementary material

Download Wang et al. supplementary material(PDF)
PDF 194.9 KB