Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-26T23:18:29.275Z Has data issue: false hasContentIssue false

PREHARVEST SPROUTING ASSESSMENT IN WHEAT GENOTYPES INFLUENCED BY TEMPERATURE AND DEGREE DAYS

Published online by Cambridge University Press:  13 March 2017

L. A. OKUYAMA*
Affiliation:
Instituto Agronômico do Paraná (IAPAR), Caixa Postal 10030, CEP 86057–970 Londrina, Paraná, Brazil
N. S. FONSECA JUNIOR
Affiliation:
Instituto Agronômico do Paraná (IAPAR), Caixa Postal 10030, CEP 86057–970 Londrina, Paraná, Brazil
P. H. CARAMORI
Affiliation:
Instituto Agronômico do Paraná (IAPAR), Caixa Postal 10030, CEP 86057–970 Londrina, Paraná, Brazil
M. M. KOHLI
Affiliation:
Capeco/Inbio, Asuncion 1512, Paraguay
*
§Corresponding author. Email: lauro2288@gmail.com

Summary

The environmental conditions and test duration in rainfall simulators have been major constraints to find reliable differences in preharvest sprouting (PHS) among wheat cultivars. This study aimed to elucidate the temperature conditions and degree-days (DD) that enable higher discrimination of genotypes in a PHS test. Thirteen genotypes with different degrees of PHS (BR 18, BRS 220, CD 104, CD 105, CD 108, CD 114, CD 116, Frontana, IPR 085, IPR 128, IPR 136, OR1 and Safira) were evaluated in a rainfall simulator, during four years, conducting two trials per year. The tests were carried on 20 spikes per cultivar, kept in a vertical position on Styrofoam plates, spaced 10 cm between rows and 5 cm within the row. The air temperature data were recorded on a thermograph and the DD were calculated from the mean daily air temperature assuming a base temperature of 4 °C. The Falling Number (FN) parameter and germination percentage (GP) data were averaged for each test. The temperatures (minimum, mean and maximum) and the DD were regressed and correlated with FN and GP. Any increase in the minimum and mean air temperature and accumulated DD decreased FN values and increased GP. Higher genotypic discrimination was achieved at an average air temperature of 21.5 °C and 35 DD. These values can be used as reference to set simulated rain testing condition for screening genotype for PHS based on FN or pericarp rupture of grains.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

AACC (2000). Approved Methods of the American Association of Cereal Chemists, 10th edn. St Paul, MN, USA: American Association of Cereal Chemists.Google Scholar
Acevedo, E., Silva, P. and Silva, H. (2002). Wheat growth and physiology. In Bread Wheat: Improvement and Production, Food and Agriculture Organization of the United Nations, Rome, Italy. (Eds Curtis, B. C., Rajaram, S., and Gomez Macpherson, H.), Available from: http://www.fao.org/docrep/006/Y4011E/y4011e06.htm (Accessed May 25, 2016).Google Scholar
Bassoi, M. C., Flintham, J. and Riede, C. R. (2006). Analysis of preharvest sprouting in three Brazilian wheat populations. Pesquisa Agropecuária Brasileira 41:583590.Google Scholar
Bassoi, M. and Flintham, J. (2005). Relationship between grain colour and preharvest sprouting-resistance in wheat. Pesquisa Agropecuária Brasileira 40:981988.Google Scholar
Bizova, I., Hromadko, M. and Svec, K. (2011). Testing of pre-harvest sprouting of wheat and triticale at the breeding station Uhretice, Selgen Corp., Czech Republic. Tagung der Vereinigung der Pflanzenzuchter 62:109110.Google Scholar
Brasil (2010). Ministério da Agricultura, Pecuária e Abastecimento. Instrução Normativa n° 38, de 30 de novembro de 2010. Regulamento técnico do trigo. Diário Oficial da República Federativa do Brasil, Brasília, DF, n 229, Seção 1. Available from: http://sistemasweb.agricultura.gov.br/sislegis/action/detalhaAto.do?method=visualizarAtoPortalMapa&chave=358389789. (Accessed May 02, 2016).Google Scholar
Czarnecki, E. (1986). Breeding and selecting for preharvest sprouting resistance in red wheats. In Proceedings of 4th International Symposium on Pre-Harvest Sprouting in Cereals, 4553 (Ed , D. J. Mares, ). Boulder: Westview Press.Google Scholar
DePauw, R. M., Knox, R. E., Singh, A. K., Fox, S. L, Humphreys, D. G. and Hucl, P. (2012). Developing standardized methods for breeding preharvest sprouting resistant wheat, challenges and successes in Canadian wheat. Euphytica 188:714.CrossRefGoogle Scholar
Franco, F. A., Pinto, R. B., Scapim, C. A., Schuster, I., Predebon, C. T. and Marchioro, V. S. (2009). Tolerância à germinação na espiga em cultivares de trigo colhido na maturação fisiológica. Ciência Rural 39:23962401.Google Scholar
Gavazza, M. I. A., Bassoi, M. C., Carvalho, T. C., Bespalhok Filho, J. C. and Panobianco, M. (2012). Methods for assessment of pre-harvest sprouting in wheat cultivars. Pesquisa Agropecuária Brasileira 7:928933Google Scholar
Guarienti, E. M., Ciacco, C. F., Cunha, G. R., Del Duca, L. J. A. and Camargo, C. M. O. (2003). Avaliação do efeito de variáveis meteorológicas na qualidade industrial e no rendimento de grãos de trigo pelo emprego de análise de componentes principais. Ciência e Tecnologia de Alimentos 23:500510.Google Scholar
Hanft, J. M. and Wych, R. D. (1982). Visual indicators of physiological maturity in hard red spring wheat. Crop Science 22:584587.Google Scholar
IAPAR (2003). Informações Técnicas Para as Culturas do Trigo e Triticale no Paraná, 202 Londrina: Instituto Agronômico do Paraná (IAPAR), (Circular, 126)Google Scholar
MacMaster, G. J. and Derera, N. F. (1976). Methodology and sample preparation when screening for sprouting damage in cereals. Cereal Research Communications 4:251254.Google Scholar
Mares, D. J. (1993). Preharvest sprouting in wheat. I Influence of cultivar, rainfall and temperature during grain ripening. Australian Journal of Agricultural Research 44:12591272.Google Scholar
Mares, D. J. and Mrva, K. (2008). Late-maturity alpha-amylase: Low falling number in wheat in the absence of preharvest sprouting. Journal of Cereal Science 47:617.Google Scholar
McMaster, G. S. and Wilhelm, W. W. (1997). Growing degree-days: One equation, two interpretations. Agricultural and Forest Meteorology 87:291300.Google Scholar
Nyachiro, J. M., Clarke, F. R., DePauw, R. E., Knox, R. E. and Armstrong, K. C. (2002). Temperature effects on seed germination and expression of seed dormancy in wheat. Euphytica 126:123127.Google Scholar
Paterson, A. H., Sorrells, M. E. and Obendorf, R. L. (1989). Methods of evaluation for preharvest sprouting resistance in wheat breeding programs. Canadian Journal of Plant Science 69:681689.Google Scholar
Reddy, L. V., Metzger, R. J. and Ching, M. (1985). Effect of temperature on seed dormancy of wheat. Crop Science 25:455–259.Google Scholar
Shorter, S. C., Munro, C. A. and Hodgkinson, J. (2005). Predicting pre-harvest sprouting susceptibility in New Zealand wheat cultivars. Euphytica 143:309312.Google Scholar
Singh, A. K., Knox, R. E., Clarke, J. M., Clarke, F. R., Singh, A., DePauw, R. D. and Cuthbert, R. D. (2014). Genetics of pre-harvest sprouting resistance in a cross of Canadian adapted durum wheat genotypes. Molecular Breeding 33:919929.Google Scholar