Hostname: page-component-77c89778f8-m8s7h Total loading time: 0 Render date: 2024-07-17T04:51:25.188Z Has data issue: false hasContentIssue false

Foliar Analysis as a Guide to NPK Nutrition of Pineapples in the Forest Zone of Ghana

Published online by Cambridge University Press:  03 October 2008

W. Godfrey-Sam-Aggrey
Affiliation:
Department of Horticulture, Faculty of Agriculture, University of Science & Technology, Kumasi, Ghana

Summary

In a 20 plot experiment with central composite second-order rotatable design, basal non-chlorophyllous sections of “D” leaves of Sugarloaf pineapples were sampled at harvest and analysed for N, P, K. Maximum yield of 17·8 tons per acre of good quality Sugarloaf pineapples and maximum fruit length of 27·4 cm. were associated with the nutrient combination of 36–42–32 lb/acre N P K applied at 4, 6, 11 and 12 months. The nutrient levels in the basal sections of “D” leaves corresponding to maximum fruit yield were 0·35–0·40% N; 0·04% P; 0·44% K; K/P 11·2–11·5: 1. K/P ratio for maximum fruit length was 10·4–11·5: 1. N/K ratio was associated with lodging.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1970

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bould, C. (1964). J. Sci. Fd Agric. 15, 474.CrossRefGoogle Scholar
Brammer, H. (1960). Agriculture and Land-Use in Ghana. Oxford University Press.Google Scholar
Cooke, P. C. (1949). Dep. Agric. Fed. Malaya, Johore Banhru.Google Scholar
De Geus, J. G. (1961). Stikstof. (Eng. Ed.) 5, 53.Google Scholar
Emmert, F. H. (1959). Proc. Am. Soc. hort. Sci. 73, 521.Google Scholar
Goodall, D. W. & Gregory, F. G. (1947). Chemical Composition of Plants as an Index of their Nutritional Status. Imp. Bur. Hortic. and Plantation Crops. Tech. Comm. 17.Google Scholar
Hewitt, E. J. (1957). In Plant Analysis and Fertilizer Problems (Ed. Prevot, P.). Paris: IRHO.Google Scholar
Kanapathy, K. (1958). Malay. agric. J. 41, 18.Google Scholar
Lundegardh, H. (1951). Leaf Analysis. London: Hilger and Watts.Google Scholar
Macy, P. (1936). Plant. Physiol. 11, 749.CrossRefGoogle Scholar
Martin-Prevel, P. (1959). Fruits d' Outre Mer. 14, 101.Google Scholar
Martin-Prevel, P. (1961). Fruits d' Outre Mer 16, 341 and 539.Google Scholar
Montenegro, H. W. W., Torres, G. & Da Silva, G. (1967). Fertilité 29, 23.Google Scholar
Pan, K. Y. (1957). J. agric. Assoc. China 19, 11.Google Scholar
Py, C. (1959) Fruits d'Outre Mer 14, 3.Google Scholar
Py, C., Tisseau, M. A., Oury, B. & Ahamada, F. (1957). Fertilité 3, 5.Google Scholar
Py, C., & Lossois, P. (1962). Fruits d'Outre Mer 17, 75.Google Scholar
Samuels, G., & Gandia-Diaz, H. (1960). Proc. Carib. Reg. Am. Soc. hort. Sci. 4, 41.Google Scholar
Samuels, G., Landrau, P. Jr & Olivencia, R. (1955). J. Agric. Univ., Puerto Rico 39, 1.Google Scholar
Sanford, W. G. (1962). Better Crops 46, 32.Google Scholar
Sideris, C. P. & Young, H. Y. (1950). Plant Physiol. 25, 594.CrossRefGoogle Scholar
Sideris, C. P. & Young, H. Y. (1951). Plant Physiol. 26, 456.CrossRefGoogle Scholar
Smith, P. F. (1966). In Fruit Nutrition (Ed. Childers, N. F.). New Brunswick: New Jersey, Rutgers State University.Google Scholar
Steenbjerg, F. (1954) Pl. Soil 5, 226.CrossRefGoogle Scholar
Steenbjerg, F. & Jakobsen, S. T. (1963). Soil Sci. 95, 69.CrossRefGoogle Scholar
Su, N. R. (1958/1959). Soils Fert., Taiwan 29.Google Scholar
Su, N. R. (1958). J. agric. Assoc. China 22, 27.Google Scholar
Thomas, W. (1945). Soil Sci. 59, 353.CrossRefGoogle Scholar
Ulrich, A. (1948). In Diagnostic Techniques for Soils and Crops. Washington, D.C.: Amer. Potash Institute.Google Scholar