Hostname: page-component-848d4c4894-p2v8j Total loading time: 0.001 Render date: 2024-05-19T13:42:19.650Z Has data issue: false hasContentIssue false

Correlation and Path Coefficient Analyses in Fodder Cowpea (Vigna sinensis Endl.)

Published online by Cambridge University Press:  03 October 2008

O. P. Dangi
Affiliation:
Department of Plant Breeding, Haryana Agricultural University, Hissar, India
R. S. Paroda
Affiliation:
Department of Plant Breeding, Haryana Agricultural University, Hissar, India

Summary

The genotypic and phenotypic correlations and path-coefficients were studied in two different environments, using twenty fodder genotypes of cowpeas. Among quantitative characters, leaves/plant, branches/plant and stem girth were highly correlated with both green and dry matter yield, whereas among quality characters, total protein (per cent) showed significant association with digestibility (per cent). Based on path-coefficient analysis, leaves/plant and protein (per cent) were found to be the most important component characters. These two characters were also highly correlated at both the genotypic and phenotypic level and, therefore, selection based on leaves/plant is likely to be useful for simultaneous improvements in yield and quality of fodder in cowpeas.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1974

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Borojevic, S. & Cupina, T. (1968). Proc. Third Intern. Wheat Genet. Symp., Canberra388.Google Scholar
Borojevic, S. & Cupina, T. (1969). Contemporary Agriculture-Novi Sad. 17, 5.Google Scholar
Borthakur, D. N. & Poehlman, J. M. (1970). Crop Sci. 10, 452.CrossRefGoogle Scholar
Dewey, D. R. & Lu, K. H. (1959). Agron. J. 51, 515.CrossRefGoogle Scholar
Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A. & Smith, F. (1956). Anal. Chem. 28, 350.CrossRefGoogle Scholar
Grafius, J. E. (1960). Agron. J. 52, 361.CrossRefGoogle Scholar
Gupta, V. P. (1971). Indian J. Genet. 31, 283.Google Scholar
Hayman, B. I. (1960). Heredity 15, 324327.CrossRefGoogle Scholar
Kendall, W. A., Todd, J. R. & Templeton, W. C. (1970). Crop Sci. 10, 47.CrossRefGoogle Scholar
Lal, V. S. & Haque, M. F. (1971). Indian J. Genet. 31, 357.Google Scholar
Malik, J. S., Paroda, R. S. & Arora, N. D. (1973). Zeitschrift für Pflan. 69, 333.Google Scholar
McKenzie, H. A. & Wallace, H. S. (1954). Aust. J. Chem. 7, 55.CrossRefGoogle Scholar
Moll, R. H., Kojima, H. & Robinson, H. F. (1962). Crop Sci. 2, 7879.CrossRefGoogle Scholar
Paroda, R. S. (1972). Zeitschrift für Pflan. 67, 145.Google Scholar
Paroda, R. S. & Joshi, A. B. (1970a). Heredity 25, 383.CrossRefGoogle Scholar
Paroda, R. S. & Joshi, A. B. (1970b). Indian J. Genet. 30, 298.Google Scholar
Rasmusson, D. C. & Cannell, R. Q. (1970). Crop Sci. 10, 51.CrossRefGoogle Scholar
Sengupta, K. & Kataria, R. S. (1971). Indian J. Genet. 31, 290.Google Scholar
Singh, K. B. & Mehndiratta, P. D. (1969). Indian J. Genet. 29, 104.Google Scholar
Singh, K. B. & Mehndiratta, P. D. (1970). Indian J. Genet. 39, 244.Google Scholar