Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-20T01:32:09.692Z Has data issue: false hasContentIssue false

ABOVE-GROUND BIOMASS ESTIMATION OF OPUNTIA FICUS-INDICA (L.) MILL. FOR FORAGE CROP IN A MEDITERRANEAN ENVIRONMENT BY USING NON-DESTRUCTIVE METHODS

Published online by Cambridge University Press:  13 April 2016

CARLOS MANUEL GASPAR REIS
Affiliation:
Departamento de Ciências da Vida e dos Alimentos, Instituto Politécnico de Castelo Branco, Escola Superior Agrária6001–909 Castelo Branco, Portugal Research Centre for Natural Resources, Environment and Society (CERNAS-IPCB), Bencanta, 3045–601 Coimbra, Portugal
LUIZ CARLOS GAZARINI
Affiliation:
Departamento de Biologia, Escola de Ciências e Tecnologia, ICAAM – Instituto de Ciências Agrarias e Ambientais Mediterrânicas, Universidade de Évora, 7002-554 Évora, Portugal
TERESA FIDALGO FONSECA
Affiliation:
Department of Forest Sciences and Architecture Landscape, University of Trás-os-Montes e Alto Douro, 5000–801 Vila Real, Portugal
MARIA MARGARIDA RIBEIRO*
Affiliation:
Departamento de Recursos Naturais e Desenvolvimento Sustentável, Instituto Politécnico de Castelo Branco, Escola Superior Agrária6001–909 Castelo Branco, Portugal Forest Research Centre, School of Agriculture, University of Lisbon, 1349-017 Lisbon, Portugal
*
§§Corresponding author. Email: mataide@ipcb.pt

Summary

In marginal lands Opuntia ficus-indica (OFI) could be used as an alternative fruit and forage crop. The plant vigour and the biomass production were evaluated in Portuguese germplasm (15 individuals from 16 ecotypes) by non-destructive methods, 2 years following planting in a marginal soil and dryland conditions. Two Italian cultivars (Gialla and Bianca) were included in the study for comparison purposes. The biomass production and the plant vigour were estimated by measuring the cladodes number and area, and the fresh (FW) and dry weight (DW) per plant. We selected linear models by using the biometric data from 60 cladodes to predict the cladode area, the FW and the DW per plant. Among ecotypes, significant differences were found in the studied biomass-related parameters and several homogeneous groups were established. Four Portuguese ecotypes had higher biomass production than the others, 3.20 Mg ha−1 on average, a value not significantly different to the improved ‘Gialla’ cultivar, which averaged 3.87 Mg ha−1. Those ecotypes could be used to start a breeding program and to deploy material for animal feeding and fruit production.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

AEMET (2011). Iberian Climate Atlas, Air Temperature and Precipitation (1971-2000). Agencia Estatal de Meteorología de España and Instituto de Meteorologia de Portugal, Madrid. 80 pp.Google Scholar
Anderson, E. F. (2001). The Cactus Family. Portland, Oregon: Timber Press, 776.Google Scholar
Andrade-Montemayor, H. M., Cordova-Torres, A. V., García-Gasca, T. and Kawas, J. R. (2011). Alternative foods for small ruminants in semiarid zones. The case of Mesquite (Prosopis laevigata spp.) and Nopal (Opuntia spp.). Small Ruminant Research 98:8392.Google Scholar
Caloggero, S. and Parera, C. A. (2004). Assessment of prickly pear (Opuntia ficus-indica) varieties and their possible planting systems. Spanish Journal of Agricultural Research 2:401407.Google Scholar
Curt, M. D., Sánchez, F., Sánchez, J., Aguado, P. L., Uceda, M., Zaragoza, G., Agüera, J. M. and Fernández, J. (2011). Allometric method for the estimation of prickly pear (Opuntia ficus-indica (L.) Miller) biomass weight: comparison between seasonal data. In Proc 19th European Biomass Conference and Exhibition, 596–600. Berlin, Germany. Available at: http://www.etaflorence.it/proceedings/?detail=6884. Assessed 15 June 2015.Google Scholar
Garcia de Cortázar, V. and Nobel, P. (1992). Biomass and fruit production for the prickly pear cactus, Opuntia ficus-indica . Journal of the American Society for Horticultural Science 117:558562.CrossRefGoogle Scholar
Goldstein, G. and Nobel, P. S. (1994). Water relations and low-temperature acclimation for cactus species varying in freezing tolerance. Plant Physiology 104:675681.CrossRefGoogle ScholarPubMed
Griffith, M. P. (2004). The origins of an important cactus crop, Opuntia ficus-indica (Cactaceae): new molecular evidence. American Journal of Botany 91:19151921.CrossRefGoogle ScholarPubMed
Inglese, P., Barbera, G., Gugliuzza, G. and Liguori, G. (2009). Ecophysiology and fruit production of cultivated cacti. In Perspectives in Biophysical Plant Ecophysiology: A Tribute to Park S. Nobel, 153166 (Eds. Barrera, E. De la and Smith, W. K.). Mexico: Universidad Nacional Autónoma de Mexico.Google Scholar
Inglese, P., Basile, F. and Schirra, M. (2002). Cactus pear fruit production. In Cacti: Biology and Uses, 163183 (Ed. Nobel, P. S.). USA: University of California Press.Google Scholar
Jigar, E., Sulaiman, H., Asfaw, A. and Bairu, A. (2011). Study on renewable biogas energy production from cladodes of Opuntia ficus-indica . Journal of the Science of Food and Agriculture 1:4448.Google Scholar
Lim, T. K. (2012). Opuntia ficus-indica . In Edible Medicinal and Non-Medicinal Plants, Volume I Fruits, 660682. Netherlands: Springer.Google Scholar
Montgomery, D. C., Peck, E. A. and Vining, G. G. (2012). Introduction to Linear Regression Analysis, 5th edn. NY: Wiley, 672.Google Scholar
Neder, D. G., Costa, F. R., Edvan, R. L. and Filho, L. T. (2013). Correlations and path analysis of morphological and yield traits of cactus pear accessions. Crop Breeding and Applied Biotechnology 13:203207.Google Scholar
Nobel, P. S. (1988). Environmental Biology of Agave and Cacti. Cambridge: Cambridge University Press.Google Scholar
Nobel, P. S. and De la Barrera, E. (2003). Tolerances and acclimation to low and high temperatures for cladodes, fruits and roots of a widely cultivated cactus, Opuntia ficus-indica . New Phytologist 157:271279.Google Scholar
Pinto, M. S., Menezes, R., Sampaio, E., Andrade, A., Filho, E., Silva, I., Andrade, M. and Figueiredo, M. (2002). Estimativa do peso da palma forrageira (Opuntia ficus-indica) a partir de medidas dos cladódios. In Proc 39 Reunião Anual da Sociedade Brasileira de Zootecnia, 54–64. Recife, Pernambuco, Brasil. Available at: http://www.sbz.org.br/reuniaoanual/anais/?idiom=pt. Accessed 15 June 2015.Google Scholar
Rodrigues, A. M., Pitacas, F. I., Reis, C. M. G. and Blasco-Ruiz, M. (2016). Nutritional value of Opuntia ficus-indica cladodes from Portuguesse ecotypes. Bulgarian Journal of Agricultural Science 22:4045.Google Scholar
Sáiz, M. and Fernández, J. (1990). Efecto del régimen hídrico sobre el tamaño de los cladodios de Opuntia ficus-indica (L.) Miller. Phyton 51:125132.Google Scholar
Schröter, D., Cramer, W., Leemans, R., Prentice, I. C., Araújo, M. B., Arnell, N. W., Bondeau, A., Bugmann, H., Carter, T. R., Gracia, C. A., de la Vega-Leinert, A. C., Erhard, M., Ewert, F., Glendining, M., House, J. I., Kankaanpää, S., Klein, R. J. T., Lavorel, S., Lindner, M., Metzger, M. J., Meyer, J., Mitchell, T. D., Reginster, I., Rounsevell, M., Sabaté, S., Sitch, S., Smith, B., Smith, J., Smith, P., Sykes, M. T., Thonicke, K., Thuiller, W., Tuck, G., Zaehle, S. and Zierl, B. (2005). Ecosystem service supply and vulnerability to Gobal change in Europe. Science 310:13331337.Google Scholar
Tiznado-Hernández, M. E., Fortiz-Hernández, J., Ojeda-Contreras, Á. J. and Rodríguez-Félix, A. (2010). Use of the elliptical mathematical formula to estimate the surface area of cladodes in four varieties of Opuntia ficus-indica . Journal of the Professional Association for Cactus Development 12:98109.Google Scholar
Valdez-Cepeda, R. D., Blanco-Macías, F., Gallegos-Vázquez, C., Salinas-García, G. E. and Vázquez-Alvarado, R. E. (2001). Freezing tolerance of Opuntia spp. Journal of the Professional Association for Cactus Development 4:105115.Google Scholar
Zoghlami, N., Bouamama, B., Khammassi, M. and Ghorbel, A. (2012). Genetic stability of long-term micropropagated Opuntia ficus-indica (L.) Mill. plantlets as assessed by molecular tools: Perspectives for in vitro conservation. Industrial Crops and Products 36:5964.Google Scholar
Supplementary material: File

Reis supplementary material

Figure S1

Download Reis supplementary material(File)
File 203.3 KB
Supplementary material: File

Reis supplementary material

Table S1

Download Reis supplementary material(File)
File 4.9 MB
Supplementary material: File

Reis supplementary material

Table S2

Download Reis supplementary material(File)
File 96.3 KB
Supplementary material: File

Reis supplementary material

Table S3

Download Reis supplementary material(File)
File 95.7 KB
Supplementary material: File

Reis supplementary material

Table S4

Download Reis supplementary material(File)
File 96.8 KB