Hostname: page-component-848d4c4894-nr4z6 Total loading time: 0 Render date: 2024-05-12T03:18:48.288Z Has data issue: false hasContentIssue false

Red Supergiants as Cosmic Abundance Probes

Published online by Cambridge University Press:  23 May 2013

B. Davies
Affiliation:
Astrophysics Research Institute, Liverpool John Moores University, Egerton Wharf, Birkenhead CH41 1LD, UK
R.-P. Kudritzki
Affiliation:
Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI, 96822, USA
B. Plez
Affiliation:
Laboratoire Univers et Particules de Montpellier, Université Montpellier 2, CNRS, 34095 Montpellier, France
M. Bergemann
Affiliation:
Max-Planck-Institute for Astrophysics, Karl-Schwarzschild-Str.1, 85741 Garching, Germany
Z. Gazak
Affiliation:
Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI, 96822, USA
C. Evans
Affiliation:
UK Astronomy Technology Centre, Royal Observatory Edinburgh, Blackford Hill, Edinburgh EH9 3HJ, UK
Get access

Abstract

The chemical abundances of galaxies provide key constraints to models of their formation and evolution. Unfortunately, the standard method of determining abundances, from the strong emission lines of Hii-regions, is well-known to be subject to large systematic errors, particularly at high metallicities. To address this problem we are currently working on a project to measure a galaxy’s chemical abundances from spectral analysis of individual RSGs. By focussing on a spectral window in the J-band which contains few molecular lines, we are able to derive accurate chemical abundances from relatively low resolution data. In fact, we show that this technique can operate at distances of 3–4 Mpc using the VLT, and a factor of 10 further if we target massive RSG-dominated star clusters. Furthermore, in the ELT-era, we show that we can perform abundance analysis on individual stars out to 70 Mpc, and redshifts of 0.1 for star clusters.

Type
Research Article
Copyright
© EAS, EDP Sciences 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alvarez, R., & Plez, B., 1998, A&A, 330, 1109
Bergemann, M., Kudritzki, R.-P., Plez, B., et al., 2012, ApJ, 751, 156 CrossRef
Bergemann, M., Kudritzki, R.-P., Würl, M., et al., 2013, ApJ, 764, 115 CrossRef
Colavitti, E., Matteucci, F., & Murante, G., 2008, A&A, 483, 401
Davé, R., Finlator, K., & Oppenheimer, B.D., 2011, MNRAS, 416, 1354 CrossRef
Davies, B., Kudritzki, R., & Figer, D.F., 2010, MNRAS, 407, 1203 CrossRef
Davies, B., Origlia, L., Kudritzki, R., et al., 2009a, ApJ, 694, 46 CrossRef
Davies, B., Origlia, L., Kudritzki, R., et al., 2009b, ApJ, 696, 2014 CrossRef
Evans, C.J., Davies, B., Kudritzki, R.-P., et al., 2011, A&A, 527, A50
Gazak, J.Z., Bastian, N., Kudritzki, R.-P., et al., 2012, MNRAS, L41
Gustafsson, B., Edvardsson, B., Eriksson, K., et al., 2008, A&A, 486, 951
Kewley, L.J., & Ellison, S.L., 2008, ApJ, 681, 1183 CrossRef
Köppen, J., Weidner, C., & Kroupa, P., 2007, MNRAS, 375, 673 CrossRef
Neichel, B., Fusco, T., & Conan, J.-M. 2008, J. Opt. Soc. Am. A, 26, 219 CrossRef
Plez, B., 2012, Astrophysics Source Code Library, 5004
Puech, M., Yang, Y.B., & Flores, H., 2010, Soc. Photo-Opt. Instrum. Eng. (SPIE) Conf. Ser., 7735
Tremonti, C.A., Heckman, T.M., Kauffmann, G., et al., 2004, ApJ, 613, 898 CrossRef