Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-28T09:44:11.623Z Has data issue: false hasContentIssue false

Modelling convection mixing length parameter from observations of FGK binary stars

Published online by Cambridge University Press:  25 February 2014

J. Fernandes*
Affiliation:
CGUC, Departamento de Matemática e Observatrio Astronómico da Universidade de Coimbra, Portugal
Get access

Abstract

Modeling the convection of stellar interiors is crucial for stellar evolutionary studies. During the last decades different approximations (phenomenological, simulations, etc.) have been developed in order to improve the convection description. In spite of that, most of the stellar evolutionary tracks or isochrones are built, basically, using a theory established more than 50 years ago: the famous mixing length theory (MLT). It is very well known the MLT limitations and its inconsistencies. However MLT is still strongly used. Probably for good reasons (e.g. good predictions for the solar model and user friendly implementation in stellar evolutionary codes). The computation of stellar evolutionary models using MLT is dependent, at least, of two free parameters: the MLT parameter (particularly important for the super-adiabatic layer, in convective envelopes) and the amount of overshooting in convective cores. In this framework, the question is: are MLT parameter or overshoting constants from star to star (independently of the stellar mass, chemical composition and evolutionary stage)? To help to answer this question the FGK stars members of binaries play an important role. In this presentation, we point out the main contributions of binaries for the convection parameters estimation, in particularly for the mixing length parameter.

Type
Research Article
Copyright
© EAS, EDP Sciences, 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andersen, J., 1991, A&ARv, 3, 91
Basu, S., & Antia, H.M., 2013, J. Phys.: Conf. Ser., 440, 012017
Bonaca, A., et al., 2012, ApJ, 755, L12CrossRef
Böhm-Vitense, E., 1958, Zeit. Astrophys., 46, 108
Bressan, A., Marigo, P., Girardi, L., Nanni, A., & Rubele, S., 2013, in 40th Liège International Astrophysical Colloquium. Ageing Low Mass Stars: From Red Giants to White Dwarfs, Liège, Belgium, Edited by Montalbn, J., Noels, A. & Van Grootel, V., EPJ Web of Conferences, Vol. 43, id.03001
Canuto, V.M., & Mazzitelli, I., 1991, ApJ, 370, 295CrossRef
Christensen-Dalsgaard, J., 1982, MNRAS, 199, 735CrossRef
Claret, A., 2004, A&A, 424, 919
Dell'Omodarme, M., Valle, G., Degl'Innocenti, S., & Prada Moroni, P.G., 2012, A&A, 540, id.A26
Demarque, P., 2009, in Proceedings of the International Astronomical Union, IAU Symposium, Vol. 258, 383
Demarque, P., Woo, J.-H., Kim, Y.-C., & Yi, S.K., 2004, ApJ 155, 66
Dotter, A., Chaboyer, B., Jevremovi, D., et al., ApJS, 178, 89CrossRef
Feiden, G.A., & Chaboyer, B., 2012, ApJ, 757, 42CrossRef
Ekström, S., Georgy, C., Eggenberger, P., et al., 2012, A&A, 537, id.A146
Fernandes, J., 2014, in preparation
Fernandes, J., Vaz, A.I.F., & Vicente, L.N., 2012, MNRAS 425, 3104CrossRef
Fernandes, J., & Monteiro, M.J.P.F.G., 2003, A&A, 399, 243
Lastennet, E., & Valls-Gabaud, D., 2002, A&A, 396, 551
Lebreton, Y., Perrin, M.-N., Cayrel, R., et al., 1999, A&A, 350, 587
Lebreton, Y., Fernandes, J., & Lejeune, T., 2001, A&A, 374, 540
Miglio, A., & Montalbán, J., 2005, A&A, 441, 615
Monteiro, M.J.P.F.G., Lebreton, Y., Montalban, J., et al., 2006, in The CoRoT Mission Pre-Launch Status – Stellar Seismology and Planet Finding, ESA SP-1306, 363Google Scholar
Morel, P., & Lebreton, Y., 2010, Astrophysics Source Code Library, record ascl:1010.059
Mowlavi, N., Eggenberger, P., Meynet, G., et al., 2012, A&A, 541, A41
Noels, A., Grevesse, N., Magain, P., et al., 1991, A&A, 247, 91
Paxton, B., Bildsten, L., Dotter, A., et al., 2011, ApJS, 192, id. 3
Pietrinferni, A., Cassisi, S., Salaris, M., & Castelli, F., 2004, ApJ, 612, 168CrossRef
Pinheiro, F., & Fernandes, J., 2013, MNRAS, in press
Pinsonneault, M.H., Terndrup, D.M., Hanson, R.B., & Stauffer, J.R., 2003, ApJ, 598, 588CrossRef
Popper, D.M., 1980, ARA&A, 18, 115CrossRef
Popper, D.M., & Ulrich, R.K., 1986, ApJ, 307, L61CrossRef
Scuflaire, R., Thado, S., Montalbn, J., et al., 2008, Ap&SS, 316, 83
Simon, N.R., 1982, ApJ, 260, 87CrossRef
Tanner, J.D., Basu, S., & Demarque, P., 2013, ApJ, 767, 78CrossRef
Thado, S., Alecian, G., LeBlanc, F., & Vauclair, S., 2012, A&A, 546, id.A100
Torres, G., Andersen, J., & Gimenez, A., 2010, A&ARv, 18, 67PubMed
Trampedach, R., & Stein, R.F., 2011, ApJ, 731, 78CrossRef
VandenBerg, D.A., Bergbusch, P.A., & Dowler, P.D., 2006, ApJS, 162, 375CrossRef
Yíldz, M., Yakut, K., Bak, H., & Noels, A., 2006, MNRAS, 368, 1941CrossRef
Weiss, A., & Schlattl, H., 2008, Ap&SS, 316, 99
White, T.R., Bedding, T.R., Stello, D., et al., 2011, ApJ, 742, L3CrossRef