Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-25T15:08:57.952Z Has data issue: false hasContentIssue false

Densitometry and Thermometry of Starburst Galaxies

Published online by Cambridge University Press:  25 November 2011

J.G. Mangum
Affiliation:
National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903-2475, USA. e-mail: jmangum@nrao.edu ;
J. Darling
Affiliation:
Center for Astrophysics and Space Astronomy, Department of Astrophysical and Planetary Sciences, Box 389, University of Colorado, Boulder, CO 80309-0389, USA; e-mail: jdarling@origins.colorado.edu ;
K.M. Menten
Affiliation:
Max-Planck-Institüt für Radioastronomie, Auf dem Hügel 69, 53121 Bonn, Germany; e-mail: kmenten@mpifr-bonn.mpg.de; chenkel@mpifr-bonn.mpg.de ;
C. Henkel
Affiliation:
Max-Planck-Institüt für Radioastronomie, Auf dem Hügel 69, 53121 Bonn, Germany; e-mail: kmenten@mpifr-bonn.mpg.de; chenkel@mpifr-bonn.mpg.de ;
M. MacGregor
Affiliation:
National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903-2475, USA. e-mail: jmangum@nrao.edu ; Harvard University, Cambridge, MA 02138, USA; e-mail: mmacgreg@fas.harvard.edu ;
Get access

Abstract

With a goal toward deriving the physical conditions in external galaxies, we present a survey of formaldehyde (H2CO) and ammonia (NH3) emission and absorption in a sample of starburst galaxies using the Green Bank Telescope. By extending well-established techniques used to derive the spatial density in star formation regions in our own Galaxy, we show how the relative intensity of the 110−111 and 211−212 K-doublet transitions of H2CO can provide an accurate densitometer for the active star formation environments found in starburst galaxies (cf. Mangum et al. 2008). Similarly, we employ the well-established technique of using the relative intensities of the (1,1), (2,2), and (4,4) transitions of NH3 to derive the kinetic temperature in starburst galaxies. Our measurements of the kinetic temperature constrained spatial density in our starburst galaxy sample represent the first mean density measurements made toward starburst galaxies. We note a disparity between kinetic temperature measurements derived assuming direct coupling to dust and those derived from our NH3 measurements which points to the absolute need for direct gas kinetic temperature measurements using an appropriate molecular probe. Finally, our spatial density measurements point to a rough constancy to the spatial density (104.5 to 105.5 cm-3) in our starburst galaxy sample. This implies that the Schmidt-Kennicutt relation between LIR and Mdense: (1) Is a measure of the dense gas mass reservoir available to form stars, and (2) Is not directly dependent upon a higher average density driving the star formation process in the most luminous starburst galaxies.

Type
Research Article
Copyright
© EAS, EDP Sciences 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Araya, E., Baan, W.A., & Hofner, P., 2004, ApJS, 154, 541 CrossRef
Baan, W.A., Güsten, R., & Haschick, A.D., 1986, ApJ, 305, 830 CrossRef
Baan, W.A., Henkel, C., Schilke, P., Mauersberger, R., & Güsten, R., 1990, ApJ, 353, 132 CrossRef
Baan, W.A., Haschick, A.D., & Uglesich, R., 1993, ApJ, 415, 140 CrossRef
Henkel, C., Baan, W.A., & Mauersberger, R., 1991, A&AR, 3, 47 PubMed
Mangum, J.G., Darling, J., Menten, K.M., & Henkel, C., 2008, ApJ, 673, 832 CrossRef
Morris, M., Zuckerman, B., Palmer, P., & Turner, B.E., 1973, ApJ, 186, 501 CrossRef
Ott, J., Weiss, A., Henkel, C., & Walter, F., 2005, ApJ, 629, 767 CrossRef
Young, J.S., & Scoville, N.Z., 1991, ARA&A, 29, 581 CrossRef