Hostname: page-component-77c89778f8-n9wrp Total loading time: 0 Render date: 2024-07-17T10:19:36.994Z Has data issue: false hasContentIssue false

Rotation induced mixing in stellar interiors

Published online by Cambridge University Press:  19 December 2013

J.-P. Zahn*
Affiliation:
LUTH, Observatoire de Paris, CNRS UMR 8102, Université Paris Diderot, 5 place Jules Janssen, 92195 Meudon, France
Get access

Abstract

The standard model of stellar structure is unable to account for various observational facts, such as anomalies in the surface composition, and there is now a broad consensus that some extra mixing must occur in the radiation zones, in addition to the always present convective overshoot or penetration. The search for the causes of this extra mixing started in the late seventies, and it was quickly realized – in particular by Sylvie Vauclair and her co-workers – that some mild turbulence must be present to counteract the effect of gravitational settling and radiative levitation. What could be responsible for this turbulence? One suggestion was the internal gravity waves emitted at the boundary of convection zones, but it is still not established whether these waves will lead to true mixing. However they transport angular momentum, and therefore they generate differential rotation, which may be shear-unstable and thus lead to turbulence. Another way to transport angular momentum and produce an unstable rotation profile is through the large-scale circulation which is induced by the structural adjustments as the star evolves, or by the torques applied to it (due to stellar wind, accretion, tides). These processes participate in what is called the “rotational mixing”; their implementation in stellar evolution codes – again under Sylvie's impulse – has given birth to a new generation of stellar models, which agree much better with the observational constraints, although there is still room for improvement.

Type
Research Article
Copyright
© EAS, EDP Sciences, 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Braithwaite, J., & Spruit, H.C., 2004, Nature, 431, 819CrossRef
Busse, F.H., 1982, ApJ, 259, 759CrossRef
Chaboyer, B., & Zahn, J.-P., 1992, A&A, 253, 173
Charbonneau, P., & MacGregor, K.B., 1993, ApJ, 417, 762CrossRef
Charbonnel, C., & Talon, S., 2005, Science, 309, 2189CrossRef
Dudis, J.J., 1974, J. Fluid Mech., 64, 65CrossRef
Deliyannis, C.P., Demarque, G., & Kawaler, S.D., 1990, ApJS, 73, 21CrossRef
Eddington, A.S., 1925, Observatory, 48, 73
Ferraro, V.C.A., 1937, MNRAS, 97, 458CrossRef
Garaud, P., 2002, MNRAS, 329, 1CrossRef
Gough, D.O., & McIntyre, M.E., 1998, Nature, 394, 755CrossRef
Herrero, A., Kudritski, R.P., Vilchez, J.M., et al., 1992, A&A, 261, 209PubMed
Herrero, A., Kudritski, R.P., Vilchez, J.M., et al., 1992, ApJ, 676, 29
Maeder, A., 2003, A&A, 399, 263
Maeder, A., Meynet, G., Ekström, S., & Georgy, C., 2009, Com. Asteroseism., 158, 72
Maeder, A., & Meynet, G., 2000, ARA&A, 38, 143CrossRef
Maeder, A., & Zahn, J.-P., 1998, A&A, 334, 1000
Mathis, S., Palacios, A., & Zahn, J.-P., 2004, A&A, 425, 243
Mathis, S., & Zahn, J.-P., 2004, A&A, 425, 229
Mathis, S., & Zahn, J.-P., 2005, A&A, 440, 653PubMed
Mestel, L., 1953, MNRAS, 113, 716CrossRef
Meynet, G., & Maeder, A., 1997, A&A, 321, 465
Meynet, G., & Maeder, A., 2000, A&A, 361, 101
Michaud, G., 1970, ApJ, 160, 641CrossRef
Press, W.H., 1981, ApJ, 245, 286CrossRef
Proffitt, C.R., & Michaud, G., 1991, ApJ, 371, 584CrossRef
Richard, O., Michaud, G., & Richer, J., 2002, ApJ, 580, 1100CrossRef
Richer, J., & Michaud, G., 2000, ApJ, 529, 338CrossRef
Prat, V., & Lignières, F., 2013, A&A, 551, 3
Schatzman, E., 1993, A&A, 279, 431
Spite, F., & Spite, M., 1982, A&A, 115, 357
Strugarek, A., Brun, A.S., & Zahn, J.-P., 2011, A&A, 532, 34
Sweet, P.A., 1950, MNRAS, 110, 548CrossRef
Talon, S., & Charbonnel, C., 2003, A&A, 405, 1025
Talon, S., & Charbonnel, C., 2005, A&A, 440, 981
Talon, S., Kumar, P., & Zahn, J.-P., 2002, ApJ, 574, L175CrossRef
Talon, S., & Zahn, J.-P., 1997, A&A, 317, 749
Talon, S., Zahn, J.-P., Maeder, A., & Meynet, G., 1997, A&A, 322, 209
Vauclair, G., Vauclair, S., & Michaud, G., 1978, ApJ, 223, 920CrossRef
Vauclair, G., Vauclair, S., & Pamjatnikh, A., 1974, A&A, 31, 63PubMed
Vogt, H., 1925, Astron. Nachr., 223, 229CrossRef
Zahn, J.-P., 1974, Stellar Instability and Evolution, IAU Symp. 59, p. 185
Zahn, J.-P., 1992, A&A, 265, 115PubMed