Hostname: page-component-7479d7b7d-767nl Total loading time: 0 Render date: 2024-07-11T10:49:52.575Z Has data issue: false hasContentIssue false

Light element burning reactions at stellar temperatures in view of the recent THM measurements

Published online by Cambridge University Press:  19 December 2013

L. Lamia
Affiliation:
Dipartimento di Fisica e Astronomia, Università degli Studi di Catania, Italy
C. Spitaleri
Affiliation:
Dipartimento di Fisica e Astronomia, Università degli Studi di Catania, Italy Laboratori Nazionali del Sud-INFN, Catania, Italy
R.G. Pizzone
Affiliation:
Laboratori Nazionali del Sud-INFN, Catania, Italy
E. Tognelli
Affiliation:
Dipartimento di Fisica, Università di Pisa, Pisa, Italy
S. Degl'Innocenti
Affiliation:
Dipartimento di Fisica, Università di Pisa, Pisa, Italy INFN Sezione di Pisa, Pisa, Italy
M. La Cognata
Affiliation:
Laboratori Nazionali del Sud-INFN, Catania, Italy
P.G. Prada Moroni
Affiliation:
Dipartimento di Fisica, Università di Pisa, Pisa, Italy INFN Sezione di Pisa, Pisa, Italy
M.L. Sergi
Affiliation:
Dipartimento di Fisica e Astronomia, Università degli Studi di Catania, Italy Laboratori Nazionali del Sud-INFN, Catania, Italy
A. Tumino
Affiliation:
Laboratori Nazionali del Sud-INFN, Catania, Italy Università Kore, Enna, Italy
Get access

Abstract

The direct measurements of nuclear reaction cross sections at astrophysical energies are usually difficult to be performed in terrestrial laboratories, mainly because of the Coulomb barrier. An alternative way of studying these processes is via the indirect methods among which the Trojan Horse (THM) represents a powerful tool for studying charged-particles induced reactions at astrophysically energies without the need of extrapolation procedures. The recent THM studies about the lithium and boron destroying reactions will be here shown and discussed.

Type
Research Article
Copyright
© EAS, EDP Sciences, 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Angulo, C., et al., 1999, Nucl. Phys. A, 656, 3CrossRef
Cyburt, R.H., et al., 2010, ApJ, 189, 240CrossRef
Gulino, M., et al., 2010, J. Phys. G, 37, 125105CrossRef
La Cognata, M., et al., 2012, Phys. Rev. Lett., 109, 232701CrossRef
La Cognata, M., et al., 2006, Eur. Phys. J., 27, 249CrossRef
La Cognata, M., et al., 2010, ApJ, 708, 796CrossRef
La Cognata, M., et al., 2011, ApJ, 739, L54CrossRef
Lamia, L., et al., 2007, Nucl. Phys. A, 787, 309cCrossRef
Lamia, L. et al., 2008, Nuovo Cim. Soc. Italiana Fis.-C, 31, 423
Lamia, L. et al., 2012a, A&A, 541, A158
Lamia, L., et al., 2012b, J. Phys. G, 39, 015106CrossRef
Lamia, L., et al., 2012c, Phys. Rev. C, 85, 025805CrossRef
Lamia, L., et al., 2013, ApJ, 768, 65CrossRef
Ko, Nakamura, et al., 2009, Proceedings IAU Symposium No. 268
Palmerini, S., et al., 2013, ApJ, 764, 128CrossRef
Pizzone, R.G., et al., 2003, A&A, 398, 423
Pizzone, R.G., et al., 2011, Phys. Rev. C, 83, 04580CrossRef
Pizzone, R.G., et al., 2005a, Phys. Rev. C, 71, 058801CrossRef
Pizzone, R.G., et al., 2005b, A&A, 438, 779
Pizzone, R.G., et al., 2013, Phys. Rev. C, 87, 025805CrossRef
Rolfs, C., & Rodney, 1988, W., Cauldrons in the Cosmos (The Univ. of Chicago, Chicago)
Romano, S., et al., 2006, EPJ A, 27, 221CrossRef
Sergi, M.L., et al., 2010, Phys. Rev. C, 82, 032801(R)CrossRef
Spitaleri, C, et al., 2004, Phys. Rev. C, 69, 055806CrossRef
Spitaleri, C., et al., 2011, Phys. Atomic Nuclei, 74, 1763CrossRef
Tognelli, E., et al., 2011, A&A, 533, A109
Tognelli, E., et al., 2012, A&A, 548, A41
Tumino, A., et al., 2007, Phys. Rev. Lett., 98, 252502CrossRef
Tumino, A., et al., 2008, Phys. Rev. C, 78, 064001CrossRef
Tumino, A., et al., 2006, EpJ A, 27, 243CrossRef
Tumino, A., et al., 2011, Phys. Lett. B, 700, 111CrossRef
Tumino, A., et al., 2011, Phys. Lett. B, 705, 546CrossRef