Skip to main content Accessibility help
×
Home
Hostname: page-component-cf9d5c678-7bjf6 Total loading time: 0.401 Render date: 2021-07-30T17:55:19.736Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Long memory properties and covariance structure of the EGARCH model

Published online by Cambridge University Press:  15 November 2002

Donatas Surgailis
Affiliation:
Vilnius Institute of Mathematics and Informatics, Akademijos 4, 2600 Vilnius, Lithuania; sdonatas@ktl.mii.lt.
Marie-Claude Viano
Affiliation:
Université des Sciences et Technologies de Lille, 59655 Villeneuve-d'Ascq Cedex, France; Marie-Claude.Viano@univ-lille1.fr.
Get access

Abstract

The EGARCH model of Nelson [29] is one of the most successful ARCH models which may exhibit characteristic asymmetries of financial time series, as well as long memory. The paper studies the covariance structure and dependence properties of the EGARCH and some related stochastic volatility models. We show that the large time behavior of the covariance of powers of the (observed) ARCH process is determined by the behavior of the covariance of the (linear) log-volatility process; in particular, a hyperbolic decay of the later covariance implies a similar hyperbolic decay of the former covariances. We show, in this case, that normalized partial sums of powers of the observed process tend to fractional Brownian motion. The paper also obtains a (functional) CLT for the corresponding partial sums' processes of the EGARCH model with short and moderate memory. These results are applied to study asymptotic behavior of tests for long memory using the R/S statistic.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

T.W. Anderson, The Statistical Analysis of Time Series. Wiley, New York (1971).
Baillie, R.T., Long memory processes and fractional integration in econometrics. J. Econometrics 73 (1996) 5-59. CrossRef
P. Billingsley, Convergence of Probability Measures. Wiley, New York (1968).
Bollerslev, T. and Mikkelsen, H.O., Modeling and pricing long memory in stock market volatility. J. Econometrics 73 (1996) 151-184. CrossRef
Breidt, F.J., Crato, N. and de Lima, P., On the detection and estimation of long memory in stochastic volatility. J. Econometrics 83 (1998) 325-348. CrossRef
D.R. Brillinger, Time Series. Data Analysis and Theory. Holt, Rinehart and Winston, New York (1975).
Yu. Davydov, The invariance principle for stationary processes. Theory Probab. Appl. 15 (1970) 487-489. CrossRef
A. Demos, Moments and dynamic structure of a time-varying-parameter stochastic volatility in mean model. Preprint (2001).
Ding, Z. and Granger, C.W.J., Modeling volatility persistence of speculative returns: A new approach. J. Econometrics 73 (1996) 185-215. CrossRef
Engle, R.F., Autoregressive conditional heteroskedasticity with estimates of the variance of U.K. inflation. Econometrica 50 (1982) 987-1008. CrossRef
E. Ghysels, A.C. Harvey and E. Renault, Stochastic volatility, edited by G.S. Maddala and C.R. Rao. North Holland, Amsterdam, Handb. Statist. 14 (1993) 119-191.
L. Giraitis, P. Kokoszka and R. Leipus, Rescaled variance and related tests for long memory in volatility and levels. Preprint (1999).
Giraitis, L., Koul, H.L. and Surgailis, D., Asymptotic normality of regression estimators with long memory errors. Statist. Probab. Lett. 29 (1996) 317-335. CrossRef
L. Giraitis, R. Leipus, P.M. Robinson and D. Surgailis, LARCH, leverage and long memory. Preprint (2000).
L. Giraitis, P.M. Robinson and D. Surgailis, A model for long memory conditional heteroskedasticity. Ann. Appl. Probab. (2000) (forthcoming).
A. Harvey, Long memory in stochastic volatility, edited by J. Knight and S. Satchell, Forecasting Volatility in the Financial Markets. Butterworth & Heineman, Oxford (1998).
C. He, T. Teräsvirta and H. Malmsten, Fourth moment structure of a family of first order exponential GARCH models, Preprint. Econometric Theory (to appear).
Ho, H.-C. and Hsing, T., Limit theorems for functionals of moving averages. Ann. Probab. 25 (1997) 1636-1669. CrossRef
Hosking, J.R.M., Fractional differencing. Biometrika 68 (1981) 165-176. CrossRef
Hurst, H., Long term storage capacity of reservoirs. Trans. Amer. Soc. Civil Engrg. 116 (1951) 770-799.
D. Kwiatkowski, P.C. Phillips, P. Schmidt and Y. Shin, Testing the null hypothesis of stationarity against the alternative of a unit root: How sure are we that economic time series have a unit root? J. Econometrics 54 (1992) 159-178.
Long, A.C. Lo memory in stock market prices. Econometrica 59 (1991) 1279-1313.
Lobato, I.N. and Savin, N.E., Real and spurious long-memory properties of stock market data (with comments). J. Business Econom. Statist. 16 (1998) 261-283.
V.A. Malyshev and R.A. Minlos, Gibbs Random Fields. Kluwer, Dordrecht (1991).
Mandelbrot, B.B., Statistical methodology for non-periodic cycles: From the covariance to R/S analysis. Ann. Econom. Social Measurement 1 (1972) 259-290.
Mandelbrot, B.B., Limit theorems of the self-normalized range for weakly and strongly dependent processes. Z. Wahrsch. Verw. Geb. 31 (1975) 271-285. CrossRef
Mandelbrot, B.B. and Taqqu, M.S., Robust R/S analysis of long run serial correlation. Bull. Int. Statist. Inst. 48 (1979) 59-104.
Mandelbrot, B.B. and Wallis, J.M., Robustness of the rescaled range R/S in the measurement of noncyclic long run statistical dependence. Water Resources Research 5 (1969) 967-988. CrossRef
Nelson, D.B., Conditional heteroskedasticity in asset returns: A new approach. Econometrica 59 (1991) 347-370. CrossRef
Robinson, P.M., Testing for strong serial correlation and dynamic conditional heteroskedasticity in multiple regression. J. Econometrics 47 (1991) 67-84. CrossRef
Robinson, P.M., The memory of stochastic volatility models. J. Econometrics 101 (2001) 195-218. CrossRef
Robinson, P.M. and Zaffaroni, P., Nonlinear time series with long memory: A model for stochastic volatility. J. Statist. Plan. Inf. 68 (1998) 359-371. CrossRef
S. Taylor, Modelling Financial Time Series. Wiley, Chichester (1986).

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Long memory properties and covariance structure of the EGARCH model
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Long memory properties and covariance structure of the EGARCH model
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Long memory properties and covariance structure of the EGARCH model
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *