Hostname: page-component-848d4c4894-2pzkn Total loading time: 0 Render date: 2024-04-30T23:32:18.843Z Has data issue: false hasContentIssue false

Spurious-free approximations of electromagnetic eigenproblems by means of Nedelec-type elements

Published online by Cambridge University Press:  15 April 2002

Salvatore Caorsi
Affiliation:
Department of Electronics, University of Pavia, Via Ferrata 1, 27100 Pavia, Italy. (caorsi@ele.unipv.it)
Paolo Fernandes
Affiliation:
Istituto per la Matematica Applicata del Consiglio Nazionale delle Ricerche, Via De Marini 6, 16149 Genoa, Italy. (fernandes@ima.ge.cnr.it, mirco@ima.ge.cnr.it)
Mirco Raffetto
Affiliation:
Istituto per la Matematica Applicata del Consiglio Nazionale delle Ricerche, Via De Marini 6, 16149 Genoa, Italy. (fernandes@ima.ge.cnr.it, mirco@ima.ge.cnr.it)
Get access

Abstract

By using an inductive procedure we prove that the Galerkin finite element approximations of electromagnetic eigenproblems modelling cavity resonators by elements of any fixed order of either Nedelec's edge element family on tetrahedral meshes are convergent and free of spurious solutions. This result is not new but is proved under weaker hypotheses, which are fulfilled in most of engineering applications. The method of the proof is new, instead, and shows how families of spurious-free elements can be systematically constructed. The tools here developed are used to define a new family of spurious-free edge elements which, in some sense, are complementary to those defined in 1986 by Nedelec.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amrouche, C., Bernardi, C., Dauge, M. and Girault, V., Vector potential in three-dimensional nonsmooth domains. Math. Methods Appl. Sci. 21 (1998) 823-864. 3.0.CO;2-B>CrossRef
Barton, M.L. and Cendes, Z.J., New vector finite elements for three-dimensional magnetic field computation. J. Appl. Phys. 61 (1987) 3919-3921. CrossRef
Bermudez, A. and Pedreira, D.G., Mathematical analysis of a finite element method without spurious solutions for computation of dielectric waveguides. Numer. Math. 61 (1992) 39-57. CrossRef
D. Boffi, Fortin operator and discrete compactness for edge elements. Numer. Math. 86 (2000). DOI 10.1007/s002110000182.
Boffi, D., A note on the discrete compactness property and the de Rham complex. Technical Report AM188, Department of Mathematics, Penn State University, 1999. Appl. Math. Lett. 14 (2001) 33-38. CrossRef
Boffi, D., Fernandes, P., Gastaldi, L. and Perugia, I., Computational models of electromagnetic resonators: analysis of edge element approximation. SIAM J. Numer. Anal. 36 (1999) 1264-1290. CrossRef
A. Bossavit, Whitney forms: a class of finite elements for three-dimensional computations in electromagnetism. IEE Proceedings, part A 135 (1988) 493-500.
Bossavit, A., A rationale for `edge-elements' in 3-D fields computations. IEEE Trans. Magnet. 24 (1988) 74-79. CrossRef
Bossavit, A., Solving maxwell's equations in a closed cavity, and the question of `spurious modes'. IEEE Trans. Magnet. 26 (1990) 702-705. CrossRef
Caorsi, S., Fernandes, P. and Raffetto, M., Edge elements and the inclusion condition. IEEE Microwave Guided Wave Lett. 5 (1995) 222-223. CrossRef
Caorsi, S., Fernandes, P. and Raffetto, M., Towards a good characterization of spectrally correct finite element methods in electromagnetics. COMPEL 15 (1996) 21-35. CrossRef
S. Caorsi, P. Fernandes and M. Raffetto, Do covariant projection elements really satisfy the inclusion condition? IEEE Trans. Microwave Theory Tech. 45 (1997) 1643-1644.
Caorsi, S., Fernandes, P. and Raffetto, M., On the convergence of Galerkin finite element approximations of electromagnetic eigenproblems. SIAM J. Numer. Anal. 38 (2000) 580-607. CrossRef
S. Caorsi, P. Fernandes and M. Raffetto, Characteristic conditions for spurious-free finite element approximations of electromagnetic eigenproblems, in Proceedings of ECCOMAS 2000, Barcelona, Spain (2000) 1-13.
Cendes, Z.J. and Silvester, P.P., Numerical solution of dielectric loaded waveguides: I-finite-element analysis. IEEE Trans. Microwave Theory Tech. 18 (1970) 1124-1131. CrossRef
P.G. Ciarlet, The finite element method for elliptic problems. North-Holland, Amsterdam (1978).
Crowley, C.W., Silvester, P.P. and Hurwitz Jr, H.., Covariant projection elements for 3d vector field problems. IEEE Trans. Magnet. 24 (1988) 397-400. CrossRef
Davies, J.B., Fernandez, F.A. and Philippou, G.Y., Finite element analysis of all modes in cavities with circular symmetry. IEEE Trans. Microwave Theory Tech. 30 (1982) 1975-1980. CrossRef
Fernandes, P. and Gilardi, G., Magnetostatic and electrostatic problems in inhomogeneous anisotropic media with irregular boundary and mixed boundary conditions. Math. Models Methods Appl. Sci. 7 (1997) 957-991. CrossRef
V. Girault and P.A. Raviart, Finite element methods for Navier-Stokes equations. Springer-Verlag, Berlin (1986).
M. Hano, Vector finite element solution of anisotropic waveguides using novel triangular elements. Electron. Com. Japan, Part 2, 71 (1988) 71-80.
Hara, M., Wada, T., Fukasawa, T. and Kikuchi, F., A three dimensional analysis of rf electromagnetic fields by the finite element method. IEEE Trans. Magnet. 19 (1983) 2417-2420. CrossRef
Hoyt, H.C., Numerical studies of the shapes of drift tubes and Linac cavities. IEEE Trans. Nucl. Sci. 12 (1965) 153-155. CrossRef
Hoyt, H.C., Simmonds, D.D. and Rich, W.F., Computer designed 805 MHz proton Linac cavities. The Review of Scientific Instruments 37 (1966) 755-762. CrossRef
F. Kikuchi, On a discrete compactness property for the Nedelec finite elements. J. Fac. Sci., Univ. Tokyo 36 (1989) 479-490.
F. Kikuchi, Theoretical analysis of Nedelec's edge elements, in Proceedings of Computational Engineering Conference, Tokyo, Japan, May 26-28 (1999).
Miniowitz, R. and Webb, J.P., Covariant-projection quadrilateral elements for the analysis of waveguides with sharp edges. IEEE Trans. Microwave Theory Tech. 39 (1991) 501-505. CrossRef
Monk, P. and Demkowicz, L., Discrete compactness and the approximation of Maxwell's equations in \( \mathbb{R}^3 \) . Math. Comput. 70 (2001) 507-523. CrossRef
Nedelec, J.C., Mixed finite elements in \( \mathbb{R}^3 \) . Numer. Math. 35 (1980) 315-341. CrossRef
Nedelec, J.C., A new family of mixed finite elements in \( \mathbb{R}^3 \) . Numer. Math. 50 (1986) 57-81. CrossRef
R. Parodi, A. Stella and P. Fernandes, Rf tests of a band overlap free daw accelerating structure, in Proceedings of the IEEE 1991 Particle Accelerator Conference, San Francisco, USA (1991) 3026-3028.
Wang, J.S. and Curvilinear, N. Ida and higher order `edge' finite elements in electromagnetic field computation. IEEE Trans. Magnet. 29 (1993) 1491-1494. CrossRef
Wong, S.H. and Cendes, Z.J., Combined finite element-modal solution of three-dimensional eddy current problems. IEEE Trans. Magnet. 24 (1988) 2685-2687. CrossRef
Webb, J.P., Hierarchal vector basis functions of arbitrary order for triangular and tetrahedral finite elements. IEEE Trans. Antennas Propagation 47 (1999) 1244-1253. CrossRef
Webb, J.P. and Miniowitz, R., Analysis of 3-D microwave resonators using covariant-projection elements. IEEE Trans. Microwave Theory Tech. 39 (1991) 1895-1899. CrossRef