Hostname: page-component-848d4c4894-8kt4b Total loading time: 0 Render date: 2024-06-28T02:40:28.839Z Has data issue: false hasContentIssue false

Existence, uniqueness and convergence of a particle approximation for the AdaptiveBiasing Force process

Published online by Cambridge University Press:  26 August 2010

Benjamin Jourdain
Affiliation:
Université Paris-Est, CERMICS, 6 et 8 avenue Blaise Pascal, 77455 Marne-La-Vallée Cedex 2, France.
Tony Lelièvre
Affiliation:
Université Paris-Est, CERMICS, Project-Team MICMAC ENPC-INRIA, 6 et 8 avenue Blaise Pascal, 77455 Marne-La-Vallée Cedex 2, France. lelievre@cermics.enpc.fr
Raphaël Roux
Affiliation:
Université Paris-Est, CERMICS, Project-Team MICMAC ENPC-INRIA, 6 et 8 avenue Blaise Pascal, 77455 Marne-La-Vallée Cedex 2, France. lelievre@cermics.enpc.fr
Get access

Abstract

We study a free energy computation procedure, introduced in [Darve and Pohorille, J. Chem. Phys.115 (2001) 9169–9183; Hénin and Chipot, J. Chem. Phys.121 (2004) 2904–2914], which relies on the long-time behavior of a nonlinear stochastic differential equation. This nonlinearity comes from a conditional expectation computed with respect to one coordinate of the solution. The long-time convergence of the solutions to this equation has been proved in [Lelièvre et al., Nonlinearity21 (2008) 1155–1181], under some existence and regularity assumptions. In this paper, we prove existence and uniqueness under suitable conditions for the nonlinear equation, and we study a particle approximation technique based on a Nadaraya-Watson estimator of the conditional expectation. The particle system converges to the solution of the nonlinear equation if the number of particles goes to infinity and then the kernel used in the Nadaraya-Watson approximation tends to a Dirac mass. We derive a rate for this convergence, and illustrate it by numerical examples on a toy model.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

R. Adams, Sobolev spaces. Academic Press (1978).
M. Bossy, J.F. Jabir and D. Talay, On conditional McKean Lagrangian stochastic models. Prob. Theor. Relat. Fields (to appear).
H. Brézis, Analyse fonctionnelle. Théorie et applications. Collection Mathématiques appliquées pour la maîtrise, Masson, Paris (1983).
C. Chipot and A. Pohorille Eds., Free Energy Calculations, Springer Series in Chemical Physics 86. Springer (2007).
Darve, E. and Pohorille, A., Calculating free energy using average forces. J. Chem. Phys. 115 (2001) 91699183. CrossRef
R. Dautray and P.L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology. Springer Verlag (1999).
Dermoune, A., Propagation and conditional propagation of chaos for pressureless gas equations. Prob. Theor. Relat. Fields 126 (2003) 459479. CrossRef
Hénin, J. and Chipot, C., Overcoming free energy barriers using unconstrained molecular dynamics simulations. J. Chem. Phys. 121 (2004) 29042914. CrossRef
Krylov, N.V. and Röckner, M., Strong solutions of stochastic equations with singular time dependent drift. Prob. Theor. Relat. Fields 131 (2005) 154196. CrossRef
Lelièvre, T., Rousset, M. and Stoltz, G., Computation of free energy profiles with parallel adaptive dynamics. J. Chem. Phys. 126 (2007) 134111. CrossRef
Lelièvre, T., Rousset, M. and Stoltz, G., Long-time convergence of an adaptive biasing force method. Nonlinearity 21 (2008) 11551181. CrossRef
J.L. Lions, Quelques méthodes de résolution des problèmes aux limites non-linéaires. Dunod (1969).
J.L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications. Dunod, Paris (1968–1970).
Metzner, P., Schütte, C. and Vanden-Eijnden, E., Illustration of transition path theory on a collection of simple examples. J. Chem. Phys. 125 (2006) 084110. CrossRef
A.S. Sznitman, Topics in propagation of chaos, Lecture notes in mathematics 1464. Springer-Verlag (1989).
Talay, D. and Vaillant, O., A stochastic particle method with random weights for the computation of statistical solutions of McKean-Vlasov equations. Ann. Appl. Prob. 13 (2003) 140180.
R. Temam, Navier-Stokes equations and nonlinear functionnal analysis. North Holland, Amsterdam (1979).
Tran, V.C., A wavelet particle approximation for McKean-Vlasov and 2D-Navier-Stokes statistical solutions. Stoch. Proc. Appl. 118 (2008) 284318. CrossRef
A.B. Tsybakov, Introduction à l'estimation non-paramétrique. Springer (2004).