Hostname: page-component-797576ffbb-lm8cj Total loading time: 0 Render date: 2023-12-01T07:09:43.674Z Has data issue: false Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": true, "coreDisableEcommerce": false, "useRatesEcommerce": true } hasContentIssue false

On the Asymptotic Analys of a Non-Symmetric Bar

Published online by Cambridge University Press:  15 April 2002

Abderrazzak Majd*
Équipe d'analyse numérique Lyon - Saint-Etienne, UMR 5585, Université Jean Monnet, 23 rue P. Michelon, 42023 Saint-Etienne Cedex 02, France. (
Get access


We study the 3-D elasticity problem in the case of a non-symmetric heterogeneous rod. The asymptotic expansion of the solution is constructed. The coercitivity of the homogenized equation is proved. Estimates are derived for the difference between the truncated series and the exact solution.

Research Article
© EDP Sciences, SMAI, 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


N.S. Bakhvalov and G.P. Panasenko, Homogenization: Averaging Processes in Periodic Media. Nauka, Moscow (1984) (Russian). Kluwer, Dordrecht, Boston and London (1989) (English).
G. Fichera, Existence theorems in elasticity. Handbuch der Physic, Band 6a/2, Springer-Verlag, Berlin-Heidelberg-New York (1972).
G.A. Iosifían, O.A. Oleinik and A.S. Shamaev, Mathematical Problems in elasticity and homogenization. Studies Math. Appl. 26, Elsevier, Amsterdam (1992).
S.M. Kozlov, O.A. Oleinik and V.V. Zhikov, Homogenization of Partial Differential Operators and Integral Functionals. Springer-Verlag, Berlin (1992).
Murat, F. and Sili, A., Comportement asymptotique des solutions du système de l'élasticité linéarisée anisotrope hétérogène dans des cylindres minces. C. R. Acad. Sci. Ser. I 328 (1999) 179-184.
S.A. Nazarov, Justification of asymptotic theory of thin rods. Integral and pointwise estimates, in Problems of Mathematical Physics and Theory of Functions, St-Petersbourg University Publishers (1997) 101-152.
Panasenko, G.P., Asymptotics of higher orders of solutions of equations with rapidly oscillating coefficients. U.S.S.R Doklady 6 (1978) 1293-1296.
Panasenko, G.P., Asymptotic analysis of bar systems. I. Russian J. Math. Phys. 2 (1994) 325-352.
Panasenko, G.P., Asymptotic analysis of bar systems. II. Russian J. Math. Phys. 4 (1996) 87-116.
G.P. Panasenko and J. Saint Jean Paulin, An asymptotic analysis of junctions of non-homogeneous elastic rods: boundary layers and asymptotics expansions, touch junctions. Moscow, Metz, Comp. Math. Phys. 33 (1993) 1483-1508.
J. Sanchez-Hubert and E. Sanchez-Palencia, Introduction aux méthodes asymptotiques et à l'homogénisation. Masson, Paris, Milan, Barcelone, Bonne (1992).
Sanchez-Hubert, J. and Sanchez-Palencia, E., Statics of curved rods on account of torsion and flexion. Eur. J. Mech. A/Solids 18 (1999) 365-390. CrossRef