Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-26T15:24:14.263Z Has data issue: false hasContentIssue false

Indirect stabilization of locally coupled wave-type systems

Published online by Cambridge University Press:  14 September 2011

Fatiha Alabau-Boussouira
Affiliation:
Present position : Délégation CNRS at MAPMO, UMR 6628, Current position : LMAM, Université Paul Verlaine-Metz and CNRS (UMR 7122) Metz Cedex 1, France. alabau@univ-metz.fr
Matthieu Léautaud
Affiliation:
Université Pierre et Marie Curie Paris 6, UMR 7598, Laboratoire Jacques-Louis Lions, 75005 Paris, France CNRS, UMR 7598 LJLL, 75005 Paris, France; leautaud@ann.jussieu.fr Laboratoire POEMS, INRIA Paris-Rocquencourt/ENSTA, CNRS UMR 2706, 78153 Le Chesnay, France
Get access

Abstract

We study in an abstract setting the indirect stabilization of systems of two wave-like equations coupled by a localized zero order term. Only one of the two equations is directly damped. The main novelty in this paper is that the coupling operator is not assumed to be coercive in the underlying space. We show that the energy of smooth solutions of these systems decays polynomially at infinity, whereas it is known that exponential stability does not hold (see [F. Alabau, P. Cannarsa and V. Komornik, J. Evol. Equ. 2 (2002) 127–150]). We give applications of our result to locally or boundary damped wave or plate systems. In any space dimension, we prove polynomial stability under geometric conditions on both the coupling and the damping regions. In one space dimension, the result holds for arbitrary non-empty open damping and coupling regions, and in particular when these two regions have an empty intersection. Hence, indirect polynomial stability holds even though the feedback is active in a region in which the coupling vanishes and vice versa.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alabau, F., Cannarsa, P. and Komornik, V., Indirect internal damping of coupled systems. J. Evol. Equ. 2 (2002) 127150. Google Scholar
Alabau-Boussouira, F., Stabilisation frontière indirecte de systèmes faiblement couplés. C. R. Acad. Sci. Paris Sér. I Math. 328 (1999) 10151020. Google Scholar
Alabau-Boussouira, F., Indirect boundary stabilization of weakly coupled systems. SIAM J. Control Optim. 41 (2002) 511541. Google Scholar
Alabau-Boussouira, F., A two-level energy method for indirect boundary observability and controllability of weakly coupled hyperbolic systems. SIAM J. Control Optim. 42 (2003) 871906. Google Scholar
Alabau-Boussouira, F., Une formule générale pour le taux de décroissance des systèmes dissipatifs non linéaires. C. R. Acad. Sci. Paris Sér. I Math. 338 (2004) 3540. Google Scholar
Alabau-Boussouira, F., Convexity and weighted integral inequalities for energy decay rates of nonlinear dissipative hyperbolic systems. Appl. Math. Optim. 51 (2005) 61105. Google Scholar
Alabau-Boussouira, F., Piecewise multiplier method and nonlinear integral inequalities for Petrowsky equation with nonlinear dissipation. J. Evol. Equ. 6 (2006) 95112. Google Scholar
Alabau-Boussouira, F., Asymptotic behavior for Timoshenko beams subject to a single nonlinear feedback control. NoDEA 14 (2007) 643669. Google Scholar
Ammar-Khodja, F., Benabdallah, A., J.E. Muñoz Rivera and R. Racke, Energy decay for Timoshenko systems of memory type. J. Differ. Equ. 194 (2003) 82115. Google Scholar
Ammar-Khodja, F., Benabdallah, A. and Dupaix, C., Null controllability of some reaction-diffusion systems with one control force. J. Math. Anal. Appl. 320 (2006) 928943. Google Scholar
Bardos, C., Lebeau, G. and Rauch, J., Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary. SIAM J. Control Optim. 30 (1992) 10241065. Google Scholar
Beyrath, A., Indirect linear locally distributed damping of coupled systems. Bol. Soc. Parana. Math. 22 (2004) 1734. Google Scholar
Burq, N., Décroissance de l’énergie locale de l’équation des ondes pour le problème extérieur et absence de résonance au voisinage du réel. Acta Math. 180 (1998) 129. Google Scholar
Burq, N. and Lebeau, G., Mesures de défaut de compacité, application au système de Lamé. Ann. Sci. Éc. Norm. Supér. 34 (2001) 817870. Google Scholar
Conrad, F. and Rao, B., Decay of solutions of the wave equation in a star-shaped domain with nonlinear boundary feedback. Asymptotic Anal. 7 (1993) 159177. Google Scholar
de Teresa, L., Insensitizing controls for a semilinear heat equation. Commun. Part. Differ. Equ. 25 (2000) 3972. Google Scholar
González-Burgos, M. and Pérez-García, R., Controllability results for some nonlinear coupled parabolic systems by one control force. Asymptotic Anal. 46 (2006) 123162. Google Scholar
Haraux, A., Semi-groupes linéaires et équations d’évolution linéaires périodiques. Publication du Laboratoire d’Analyse Numérique, Université Pierre et Marie Curie 78011 (1978) 123162. Google Scholar
Kavian, O. and de Teresa, L., Unique continuation principle for systems of parabolic equations. ESAIM : COCV 16 (2010) 247274. Google Scholar
V. Komornik, Exact controllability and stabilization : The multiplier method. Research in Applied Mathematics 36, Masson, Paris (1994).
J.E. Lagnese, Boundary stabilization of thin plates, SIAM Studies in Applied Mathematics 10. SIAM (1989).
Léautaud, M., Spectral inequalities for non-selfadjoint elliptic operators and application to the null-controllability of parabolic systems. J. Funct. Anal. 258 (2010) 27392778. Google Scholar
G. Lebeau, Équation des ondes amorties, in Algebraic and geometric methods in mathematical physics. Math. Phys. Stud., Kluwer Acad. Publ., Dordrecht (1996) 73–109.
Lebeau, G. and Robbiano, L., Stabilisation de l’équation des ondes par le bord. Duke Math. J. 86 (1997) 465491. Google Scholar
Lebeau, G. and Zuazua, E., Decay rates for the three-dimensional linear system of thermoelasticity. Arch. Rational Mech. Anal. 148 (1999) 179231. Google Scholar
J.-L. Lions, Contrôlabilité exacte, perturbations et stabilisation de systèmes distribués, Recherches en Mathématiques Appliquées, Tome 1, 8. Masson, Paris (1988).
Liu, K., Locally distributed control and damping for the conservative systems. SIAM J. Control Optim. 35 (1997) 15741590. Google Scholar
Martinez, P., A new method to obtain decay rate estimates for dissipative systems with localized damping. Rev. Math. Comput. 12 (1999) 251283. Google Scholar
Miller, L., Escape function conditions for the observation, control, and stabilization of the wave equation. SIAM J. Control Optim. 41 (2002) 15541566. Google Scholar
W. Youssef, Contrôle et stabilisation de systèmes élastiques couplés. Ph. D. thesis, University of Metz, France (2009).
Zuazua, E., Exponential decay for the semilinear wave equation with locally distributed damping. Commun. Part. Differ. Equ. 15 (1990) 205235. Google Scholar