Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-26T05:27:37.905Z Has data issue: false hasContentIssue false

A class of minimum principles for characterizing the trajectories and the relaxation of dissipative systems

Published online by Cambridge University Press:  21 December 2007

Alexander Mielke
Affiliation:
Weierstraß-Institut für Angewandte Analysis und Stochastik, Mohrenstraße 39, 10117 Berlin, Germany; mielke@wias-berlin.de Institut für Mathematik, Humboldt-Universität zu Berlin, Rudower Chaussee 25, 12489 Berlin (Adlershof), Germany.
Michael Ortiz
Affiliation:
Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA 91125, USA.
Get access

Abstract

This work is concerned with the reformulation of evolutionary problems in a weak form enabling consideration of solutions that may exhibit evolving microstructures. This reformulation is accomplished by expressing the evolutionary problem in variational form, i.e., by identifying a functional whose minimizers represent entire trajectories of the system. The particular class of functionals under consideration is derived by first defining a sequence of time-discretized minimum problems and subsequently formally passing to the limit of continuous time. The resulting functionals may be regarded as a weighted dissipation-energy functional with a weight decaying with a rate $1/\epsilon$. The corresponding Euler-Lagrange equation leads to an elliptic regularization of the original evolutionary problem. The Γ-limit of these functionals for $\epsilon\to 0$ is highly degenerate and provides limited information regarding the limiting trajectories of the system. Instead we seek to characterize the minimizing trajectories directly. The special class of problems characterized by a rate-independent dissipation functional is amenable to a particularly illuminating analysis. For these systems it is possible to derive a priori bounds that are independent of the regularizing parameter, whence it is possible to extract convergent subsequences and find the limiting trajectories. Under general assumptions on the functionals, we show that all such limits satisfy the energetic formulation (S) & (E) for rate-independent systems. Moreover, we show that the accumulation points of the regularized solutions solve the associated limiting energetic formulation.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

J. Aubin and A. Cellina, Differential Inclusions. Springer-Verlag (1984).
S. Aubry and M. Ortiz, The mechanics of deformation-induced subgrain-dislocation structures in metallic crystals at large strains. Proc. Royal Soc. London, Ser. A 459 (2003) 3131–3158.
Ball, J.M. and James, R.D., Fine phase mixtures as minimizers of energy. Arch. Rational Mech. Anal. 100 (1987) 1352. CrossRef
Brandon, D., Fonseca, I. and Swart, P., Oscillations in a dynamical model of phase transitions. Proc. Roy. Soc. Edinburgh Sect. A 131 (2001) 5981. CrossRef
Brézis, H. and Ekeland, I., Un principe variationnel associé à certaines équations paraboliques. C. R. Acad. Sci. Paris 282 (1976) 971974 and 1197–1198.
C. Carstensen, K. Hackl and A. Mielke, Non-convex potentials and microstructures in finite-strain plasticity. Proc. Royal Soc. London, Ser. A 458 (2002) 299–317.
F.H. Clarke, Optimization and Nonsmooth Analysis. SIAM, Philadelphia (1990).
Colli, P. and Visintin, A., On a class of doubly nonlinear evolution equations. Comm. Partial Diff. Eq. 15 (1990) 737756. CrossRef
Conti, S. and Ortiz, M., Dislocation microstructures and the effective behavior of single crystals. Arch. Rational Mech. Anal. 176 (2005) 103147. CrossRef
Conti, S. and Theil, F., Single-slip elastoplastic microstructures. Arch. Rational Mech. Anal. 178 (2005) 125148. CrossRef
B. Dacorogna, Direct Methods in the Calculus of Variations. Springer-Verlag, Berlin (1989).
G. Dal Maso, An introduction to Γ-convergence. Birkhäuser Boston Inc., Boston, MA (1993).
Dal Maso, G., Francfort, G. and Toader, R., Quasistatic crack growth in nonlinear elasticity. Arch. Rational Mech. Anal. 176 (2005) 165225. CrossRef
I. Fonseca, D. Brandon and P. Swart, Dynamics and oscillatory microstructure in a model of displacive phase transformations, in Progress in partial differential equations: the Metz surveys 3 , Longman Sci. Tech., Harlow (1994) 130–144.
Francfort, G. and Mielke, A., Existence results for a class of rate-independent material models with nonconvex elastic energies. J. reine angew. Math. 595 (2006) 5591.
Ghoussoub, N. and Tzou, L., A variational principle for gradient flows. Math. Ann. 330 (2004) 519549. CrossRef
Giacomini, A. and Ponsiglione, M., A Γ-convergence approach to stability of unilateral minimality properties in fracture mechanics and applications. Arch. Rational Mech. Anal. 180 (2006) 399447. CrossRef
Gurtin, M.E., Variational principles in the linear theory of viscoelasticity. Arch. Rational Mech. Anal. 3 (1963) 179191. CrossRef
Gurtin, M.E., Variational principles for linear initial-value problems. Quart. Applied Math. 22 (1964) 252256. CrossRef
K. Hackl and U. Hoppe, On the calculation of microstructures for inelastic materials using relaxed energies, in IUTAM Symposium on Computational Mechanics of Solids at Large Strains, C. Miehe Ed., Kluwer (2003) 77–86.
Jordan, R., Kinderlehrer, D. and Otto, F., Free energy and the Fokker-Planck equation. Physica D 107 (1997) 265271. CrossRef
Jordan, R., Kinderlehrer, D. and Otto, F., The variational formulation of the Fokker-Planck equation. SIAM J. Math. Anal. 29 (1998) 117. CrossRef
Jordan, R., Kinderlehrer, D. and Otto, F., Dynamics of the Fokker-Planck equation. Phase Transit. 69 (1999) 271288. CrossRef
Kružík, M., Mielke, A. and Roubíček, T., Modelling of microstructure and its evolution in shape-memory-alloy single-crystals, in particular in CuAlNi. Meccanica 40 (2005) 389418. CrossRef
J.-L. Lions and E. Magenes, Non-homogeneous boundary value problems and applications, Vol. I. Springer-Verlag, New York (1972).
Mainik, A. and Mielke, A., Existence results for energetic models for rate-independent systems. Calc. Var. PDEs 22 (2005) 7399. CrossRef
Mielke, A., Flow properties for Young-measure solutions of semilinear hyperbolic problems. Proc. Roy. Soc. Edinburgh Sect. A 129 (1999) 85123. CrossRef
Mielke, A., Deriving new evolution equations for microstructures via relaxation of variational incremental problems. Comput. Methods Appl. Mech. Engrg. 193 (2004) 50955127. CrossRef
A. Mielke, Evolution in rate-independent systems (Chap. 6), in Handbook of Differential Equations, Evolutionary Equations 2 , C. Dafermos and E. Feireisl Eds., Elsevier B.V., Amsterdam (2005) 461–559.
Mielke, A. and Müller, S., Lower semicontinuity and existence of minimizers for a functional in elastoplasticity. Z. angew. Math. Mech. 86 (2006) 233250. CrossRef
Mielke, A. and Rossi, R., Existence and uniqueness results for a class of rate-independent hysteresis problems. Math. Models Methods Appl. Sci. 17 (2007) 81123. CrossRef
A. Mielke and T. Roubíček, Numerical approaches to rate-independent processes and applications in inelasticity. ESAIM: M2AN (submitted). WIAS Preprint 1169.
A. Mielke and F. Theil, A mathematical model for rate-independent phase transformations with hysteresis, in Proceedings of the Workshop on Models of Continuum Mechanics in Analysis and Engineering, H.-D. Alber, R. Balean and R. Farwig Eds., Shaker-Verlag (1999) 117–129.
Mielke, A. and Theil, F., On rate-independent hysteresis models. NoDEA Nonlinear Differ. Equ. Appl. 11 (2004) 151189. CrossRef
Mielke, A., Theil, F. and Levitas, V.I., A variational formulation of rate-independent phase transformations using an extremum principle. Arch. Rational Mech. Anal. 162 (2002) 137177. (Essential Science Indicator: Emerging Research Front, August 2006.) CrossRef
A. Mielke, T. Roubíček and U. Stefanelli, ${\Gamma}$ -limits and relaxations for rate-independent evolutionary problems. Calc. Var. Part. Diff. Equ. (2007) Online first. DOI: 10.1007/s00526-007-0119-4
Ortiz, M. and Repetto, E., Nonconvex energy minimization and dislocation structures in ductile single crystals. J. Mech. Phys. Solids 47 (1999) 397462. CrossRef
Ortiz, M. and Stainier, L., The variational formulation of viscoplastic constitutive updates. Comput. Methods Appl. Mech. Engrg. 171 (1999) 419444. CrossRef
Ortiz, M., Repetto, E. and Stainier, L., A theory of subgrain dislocation structures. J. Mech. Physics Solids 48 (2000) 20772114. CrossRef
T. Roubíček, Nonlinear Partial Differential Equations with Applications. Birkhäuser Verlag, Basel (2005).
Sivakumar, S.M. and Ortiz, M., Microstructure evolution in the equal channel angular extrusion process. Comput. Methods Appl. Mech. Engrg. 193 (2004) 51775194. CrossRef
R. Temam, Infinite-dimensional dynamical systems in mechanics and physics. Springer-Verlag, New York (1988).
Theil, F., Young-measure solutions for a viscoelastically damped wave equation with nonmonotone stress-strain relation. Arch. Rational Mech. Anal. 144 (1998) 4778. CrossRef
Theil, F., Relaxation of rate-independent evolution problems. Proc. Roy. Soc. Edinburgh Sect. A 132 (2002) 463481. CrossRef
Yang, Q., Stainier, L. and Ortiz, M., A variational formulation of the coupled thermo-mechanical boundary-value problem for general dissipative solids. J. Mech. Phys. Solids 54 (2006) 401424. CrossRef